Project

# Title Team Members TA Documents Sponsor
39 Photocell Music Board based on Eli Fieldsteel’s Project Pitch
Alonzo Marsh
Sean Li
Kexin Hui appendix
appendix
appendix
appendix
appendix
appendix
appendix
appendix
appendix
design_review
final_paper
presentation
proposal
Our project involves creating an improved version of Eli Fieldsteel’s prototype music board. The music board consists of an array of 256 photoresistors connected via USB to a computer. The computer runs a program written in the Supercollider programming language to collect and interpret data from the music board. Each photoresistor detects the intensity of light shining on it. When a drop in light intensity on a photoresistor is detected, the computer plays a note. The music board is capable of playing any combination of notes simultaneously.

The improved music board will feature modular photoresistor boards and execute internal component failure checks. 256 photoresistors will be placed on 16 identical PCBs with 16 photoresistors on each board. If a photoresistor fails, a single PCB can be replaced easily without affecting the rest of the music board.

To add to Eli’s original design, we will also implement:
A 16x16 LED display board that will mirror the hand motions to provide a matching visual for demonstration purposes.
An algorithm to smooth the data to account for effects of inconsistent light sources including interference from spotlights and low light environments.
A user interface to switch between multiple instrument sounds and adjust board characteristics (pitch, volume, sensitivity, calibration)

Additional Ideas:
Create a generic design that can use different types of sensors (touch sensors, flex sensors, distance sensors, color sensors)
Design a small, hand held, self contained version with battery power

LED Cube

Michael Lin, Raymond Yeh

LED Cube

Featured Project

LED technology is more advanced and much more efficient than traditional incandescent light bulbs and as such our team decided we wanted to build a device related to LEDs. An LED cube is inherently aesthetically pleasing and ours will be capable of displaying 3D animations and lighting patterns with much increased complexity compared to any 2D display of comparable resolution. Environmental interaction will also be able to control the various lighting effects on the cube. Although our plan is for a visually pleasing cube, our implementation can easily be adapted for more practical applications such as displaying 3D models.