Project

# Title Team Members TA Documents Sponsor
46 Cat Selective Automated Food Dispenser
Advika Battini
Ali Yaqoob
Vibhu Vanjari
Yuchen He TA design_review
final_paper
presentation
proposal
Problem:
People with two or more cats often have one cat eating way too much food leaving the other pet starved. The chubby cat tends to eat all the food before the other one gets to it. It is also tedious to control how much food each cat gets.

Solution and features:
We aim to solve these problems by designing an automated system which controls how much food is given to each cat. The system stops the cats from eating each others food and controls how much food and at what time the cats are being fed.

Dispenser:
A desired quantity (weight) for food can be entered. The dispenser, will have a flap door that opens/closes based on feedback from a weight sensor placed under the area/bowl the food is dispensed. Times the food is dispensed when a cat approaches can also be controlled to control when the cat eats.
The food container will have IR sensors/LEDs to indicate to the person if the level of food.

Cat Detector:
Methods to detect which cat is approaching:
RFID detection: most existing dispensers / gates use RFID concerned about IP
Cat collar color detection: The part of the collar on the cats back will be distinctly colored and will be detected by a downward facing camera.The camera will take a picture as the cat approaches the device. A motion sensor can be used to activate the camera.
A sliding door to close the access to the food bowl if the wrong cat tries to eat the food.

All the above functionality can additionally be controlled by the owner of the cats using an attached screen.

Power Considerations:
The device will be powered through the wall socket and we will implement a voltage regulator to appropriately power our PCB.

Smart Frisbee

Ryan Moser, Blake Yerkes, James Younce

Smart Frisbee

Featured Project

The idea of this project would be to improve upon the 395 project ‘Smart Frisbee’ done by a group that included James Younce. The improvements would be to create a wristband with low power / short range RF capabilities that would be able to transmit a user ID to the frisbee, allowing the frisbee to know what player is holding it. Furthermore, the PCB from the 395 course would be used as a point of reference, but significantly redesigned in order to introduce the transceiver, a high accuracy GPS module, and any other parts that could be modified to decrease power consumption. The frisbee’s current sensors are a GPS module, and an MPU 6050, which houses an accelerometer and gyroscope.

The software of the system on the frisbee would be redesigned and optimized to record various statistics as well as improve gameplay tracking features for teams and individual players. These statistics could be player specific events such as the number of throws, number of catches, longest throw, fastest throw, most goals, etc.

The new hardware would improve the frisbee’s ability to properly moderate gameplay and improve “housekeeping”, such as ensuring that an interception by the other team in the end zone would not be counted as a score. Further improvements would be seen on the software side, as the frisbee in it’s current iteration will score as long as the frisbee was thrown over the endzone, and the only way to eliminate false goals is to press a button within a 10 second window after the goal.