Project

# Title Team Members TA Documents Sponsor
45 Assistive Digital Piano
Anna Shewell
Jae Young Kwak
Shruti Chanumolu
Zipeng Wang appendix0.zip
design_document0.pdf
design_document0.pdf
final_paper0.pdf
other0.pdf
presentation0.pdf
proposal0.pdf
PROBLEM: Learning to play piano over a longer duration can be tedious, boring (for some) and above all very expensive . The average cost of piano lessons is between $15 and $40 for a 30-minute lesson in the United States. However not taking lesson has potential drawbacks as well. For instance wrong fingering, playing too fast or to too slow, no performance evaluation metrics or evaluators to rate your improvement in piano playing, improper key tapping and pressure exerted on keys( affecting and changing the melody of the music) and not practicing enough. In addition it has been commonly found among young children losing motivation to play piano due to either differences with their piano teachers or just not fun to practice piano regularly.

PROPOSAL: With our project, the assistive digital piano, we aim to reduce the requirement for professional guidance in piano learning, at least at the beginner level, and aim to develop methods to make piano practicing more fun for younger kids.

INNOVATIONS: Many learning tools exist as toys for kids to play around with. What will set our project apart is that the keyboard will light up with the correct key to press in the sequence of the song in a specific color, and the player will wear gloves with color coordinated fingers that correspond to the key that is supposed to be played. Otherwise, the sound from the key will not play. Another feature that will make our keyboard unique is that we will use the note, dynamic, and rhythm data of the played song to save the player's performance and create computer visualizations to see whether the player is playing too soft, too loud, or off rhythm (when played alongside a built-in metronome).

SENSORS: --Color Sensor Info(https://www.adafruit.com/product/1334, https://www.businesswire.com/news/home/20061017005039/en/Avago-Technologies-Introduces-Industrys-Smallest-Digital-Color, ) In addition to the color sensor, we will have shock impact sensors measuring key dynamics. Digital pianos often use velocity measurements to find the speed at which the key is pressed to determine the volume. We will attempt to use both methods.

HARDWARE: To put this piano together, we will have to be cognizant of 1. How each individual key will act as a pressure sensitive switch that produces a signal for the speaker, 2. How each key will use a color sensor to detect which finger is pressing the key, 3. How the circuit will determine, from a file input, which key should be played next by which finger and prevent any other sounds from being played by keys and the song from moving on until those keys have been pressed, and 4. How the data will be recorded.

software part: from the data collected from the hardware part we will design a software to measure the rhythmic accuracy(will use a metronome to determine the speed and beat accuracy) ,errors in key and finger placements and evaluate the learners performance.

Since building a full 88 key digital piano is an extreme endeavor, we will focus on a proof of concept build that consists of just a few fully constructed keys.

El Durazno Wind Turbine Project

Alexander Hardiek, Saanil Joshi, Ganpath Karl

El Durazno Wind Turbine Project

Featured Project

Partners: Alexander Hardiek (ahardi6), Saanil Joshi (stjoshi2), and Ganpath Karl (gkarl2)

Project Description: We have decided to innovate a low cost wind turbine to help the villagers of El Durazno in Guatemala access water from mountains, based on the pitch of Prof. Ann Witmer.

Problem: There is currently no water distribution system in place for the villagers to gain access to water. They have to travel my foot over larger distances on mountainous terrain to fetch water. For this reason, it would be better if water could be pumped to a containment tank closer to the village and hopefully distributed with the help of a gravity flow system.

There is an electrical grid system present, however, it is too expensive for the villagers to use. Therefore, we need a cheap renewable energy solution to the problem. Solar energy is not possible as the mountain does not receive enough solar energy to power a motor. Wind energy is a good alternative as the wind speeds and high and since it is a mountain, there is no hindrance to the wind flow.

Solution Overview: We are solving the power generation challenge created by a mismatch between the speed of the wind and the necessary rotational speed required to produce power by the turbine’s generator. We have access to several used car parts, allowing us to salvage or modify different induction motors and gears to make the system work.

We have two approaches we are taking. One method is converting the induction motor to a generator by removing the need of an initial battery input and using the magnetic field created by the magnets. The other method is to rewire the stator so the motor can spin at the necessary rpm.

Subsystems: Our system components are split into two categories: Mechanical and Electrical. All mechanical components came from a used Toyota car such as the wheel hub cap, serpentine belt, car body blade, wheel hub, torsion rod. These components help us covert wind energy into mechanical energy and are already built and ready. Meanwhile, the electrical components are available in the car such as the alternator (induction motor) and are designed by us such as the power electronics (AC/DC converters). We will use capacitors, diodes, relays, resistors and integrated circuits on our printed circuit boards to develop the power electronics. Our electrical components convert the mechanical energy in the turbine into electrical energy available to the residents.

Criterion for success: Our project will be successful when we can successfully convert the available wind energy from our meteorological data into electricity at a low cost from reusable parts available to the residents of El Durazno. In the future, their residents will prototype several versions of our turbine to pump water from the mountains.