Project

# Title Team Members TA Documents Sponsor
48 Bike Navigation Assistant
Akshat Khajuria
Arvind Arunasalam
Saumil Agrawal
Nicholas Ratajczyk appendix
final_paper
presentation
proposal
Background
The motivation behind this project is that often when riding around campus or in a large city where we are not too familiar with specific locations, it can be hard to having Google Maps (or similar) open while riding and results in us stopping frequently. Our project aims to counter this issue.

Our idea is to have create a smart bike that helps you navigate to your destination. For this, we would have LEDs on the bike handles that light up based on what direction you need to turn in. The rider would have an application open on their phone that integrates Google Maps and sends directions to a microcontroller on the bike via bluetooth. In addition to this basic feature, we have a few other features and potential additional features (time permitting) that we plan to implement as part of our project. to make sure we are riding in the correct direction.

Basic Features
-> LED lights on the bike handle that blink in the direction that you need to turn
-> Increased frequency of the blinking light as you get closer to the turn
-> Turn indicators/blinkers that light up automatically when you turn
-> A speedometer on the bike

Additional Features (time permitting)
->Alerts when you get close to another vehicle
->Headlight that turns on automatically when it gets dark and adjusts the brightness according to the surrounding brightness
->Vibration on the bike handle before turns during the day because the LEDs might not get your attention

Idea Post
https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=23275

Low Cost Myoelectric Prosthetic Hand

Michael Fatina, Jonathan Pan-Doh, Edward Wu

Low Cost Myoelectric Prosthetic Hand

Featured Project

According to the WHO, 80% of amputees are in developing nations, and less than 3% of that 80% have access to rehabilitative care. In a study by Heidi Witteveen, “the lack of sensory feedback was indicated as one of the major factors of prosthesis abandonment.” A low cost myoelectric prosthetic hand interfaced with a sensory substitution system returns functionality, increases the availability to amputees, and provides users with sensory feedback.

We will work with Aadeel Akhtar to develop a new iteration of his open source, low cost, myoelectric prosthetic hand. The current revision uses eight EMG channels, with sensors placed on the residual limb. A microcontroller communicates with an ADC, runs a classifier to determine the user’s type of grip, and controls motors in the hand achieving desired grips at predetermined velocities.

As requested by Aadeel, the socket and hand will operate independently using separate microcontrollers and interface with each other, providing modularity and customizability. The microcontroller in the socket will interface with the ADC and run the grip classifier, which will be expanded so finger velocities correspond to the amplitude of the user’s muscle activity. The hand microcontroller controls the motors and receives grip and velocity commands. Contact reflexes will be added via pressure sensors in fingertips, adjusting grip strength and velocity. The hand microcontroller will interface with existing sensory substitution systems using the pressure sensors. A PCB with a custom motor controller will fit inside the palm of the hand, and interface with the hand microcontroller.

Project Videos