# Title Team Members TA Documents Sponsor
40 Remote Area Clearance Device (RACE)
Bjorn Oberg
Rahul Sachdeva
Nicholas Ratajczyk appendix
People drop small items such as earrings, needles etc. These can sometimes be hard to find for the naked eye, or can be in a hard to reach position. We want to build upon the ECE 110 project, and build a car that can detect metal, and pick the object up. The car will have an autonomous mode and a manual mode. In the manual mode, it will be controlled remotely by the user, through Bluetooth protocol. This car, with the metal detection circuit, has additional applications outside the home as well. It can be used as a low cost alternative to look for landmines in war torn regions. Despite the United States having the world’s largest army, IEDs and mines still pose significant difficulties for the Army with regard to engineering operations and maneuver support. A department of defense lab as shown a strong interest in this project and have offered to provide support to our team in the form of robots, processors, sensors, etc.
They have offered to allow us to use one of their “mini-bots” which we may use instead of the ECE 110 car.

We will use the chassis and the motor drivers from the ECE 110 class. We will build a metal detection circuit, and the detecting coil will be mounted in front of the car, facing downwards. When metal is detected, the car will take a step back, and use TTL logic to swipe the possible area with a small vacuum to pick up the object. We will use TTL chips to implement navigation logic, and integrate Bluetooth so that the car can receive and send signals. We will build the software that will allow the user to move the car using a laptop, and control the vacuum.

In the autonomous mode, the car will be able to navigate itself (only in a fixed, chosen room). We will fill prior information such as the dimensions of the room, and the location of the door of the ECE 445 lab. There will be a fixed base position of the car, and we will have Bluetooth beacons around the room to act as markers for recalibrating the position. The car will be equipped with wheel encoders, compass, and accelerometers. We want to give the user the ability to pick a spot where he has dropped an object (such as desk 5), and the car will go there from the base and look for the metal object near that desk.

Our base goal is to implement the metal detection circuit along with the manual operation mode of the car. Our reach goal is to implement the autonomous mode of operation.

S.I.P. (Smart Irrigation Project)

Jackson Lenz, James McMahon

S.I.P. (Smart Irrigation Project)

Featured Project

Jackson Lenz

James McMahon

Our project is to be a reliable, robust, and intelligent irrigation controller for use in areas where reliable weather prediction, water supply, and power supply are not found.

Upon completion of the project, our device will be able to determine the moisture level of the soil, the water level in a water tank, and the temperature, humidity, insolation, and barometric pressure of the environment. It will perform some processing on the observed environmental factors to determine if rain can be expected soon, Comparing this knowledge to the dampness of the soil and the amount of water in reserves will either trigger a command to begin irrigation or maintain a command to not irrigate the fields. This device will allow farmers to make much more efficient use of precious water and also avoid dehydrating crops to death.

In developing nations, power is also of concern because it is not as readily available as power here in the United States. For that reason, our device will incorporate several amp-hours of energy storage in the form of rechargeable, maintenance-free, lead acid batteries. These batteries will charge while power is available from the grid and discharge when power is no longer available. This will allow for uninterrupted control of irrigation. When power is available from the grid, our device will be powered by the grid. At other times, the batteries will supply the required power.

The project is titled S.I.P. because it will reduce water wasted and will be very power efficient (by extremely conservative estimates, able to run for 70 hours without input from the grid), thus sipping on both power and water.

We welcome all questions and comments regarding our project in its current form.

Thank you all very much for you time and consideration!