Project

# Title Team Members TA Documents Sponsor
37 Wireless Laptop Charging System
Enrique Ramirez
Jason Kao
Onur Cam
Zhen Qin design_document0.pdf
final_paper0.pdf
other0.png
other0.pdf
presentation0.pptx
proposal0.pdf
With the advent of wireless charging products for low-powered devices (phones, tablets etc.), we wonder if we could charge higher powered devices like laptops, by combining them. Laptops in class are very common due to their note taking efficiency. However, economical laptops preferred by students have low battery life, which causes them to rely on their chargers. The prevalence of these laptops causes an excessive amount of cable traffic. We believe that our project will help regulate cable traffic and thus create a more organized classroom.

What makes our project unique is that we are expanding on the concept of wireless inductive charging by connecting multiple low power wireless receiver to create a wireless adapter that plugs in to your laptop's power jack.

Based on our research, there is only one product on the market made by Dell, which retails for $200 and only works with one laptop also produced by Dell. Their laptop has an internal inductive charging receiver, and a transmitter pad.

In our project, we are trading convenience for universality; instead of requiring the purchase of a new laptop for access to wireless charging, you would only need to buy the external adapter and the corresponding transmitter. Our product will target two different markets: academic organizations and individuals. The Qi 1.1 transmitters would be implanted in classroom tables and our receivers will replace the charging blocks.

What we will completely design and build:
4 x Receiver coils
4 x AC to DC Converters -> includes rectifier, filter and regulator circuits.
1 x DC to DC converter-> filter, regulator circuits
1 x Feedback Circuit for DC to DC converter-> includes Error Generator and PI controller

Design thought process:
The charging pad(receiver), will be completely designed by us. It will consist of 4 coils that we will build ourselves.

Our coils will be designed according to the electrical requirements of our AC-DC converter output. The coil should cover at least 75% of the 5W Qi transmitter so that we achieve acceptable efficiency and coupling. By following the WPC(Wireless Power Consortium) standard we will experiment on number of turns and coil dimensions and the gap between them to be able to produce a satisfactory coil that is as small as possible.

Each coil will be connected to its own AC-DC converter. This AC-DC converter will consist a full-wave rectifier, a filter and a regulator to output our goal voltage which is 5V with 5W power. Our 4 AC-DC converters will be serially connected to supply 20V to our self-designed DC-DC converter. This DC-DC converter will step-down the 20V it receives to output 12V and 3.33A DC for powering our laptop.

In order to receive consistent power output from the DC-DC converter, we will implement a feedback system that will regulate the output voltage to the laptop jack. The feedback system will include a error generator, the proportional integral (PI) circuit and a comparator that can change the gate drive input that helps maintain a steady output.

We’ll be powering 4 Qi 1.1 transmitters independently to generate an electromagnetic field for each individual receiver coil, positioned corresponding to our coils in the charger pad. We want our project to be compatible with standard on-the-market transmitters, so we will not be designing the transmitter ourselves.

Our planned design diagram:
https://drive.google.com/open?id=1WPdFJ2hgExh4aVqoSKlM5LgJt7bY8BG1

Previous rejected RFA:
https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=22675
Idea Discussion:
https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=22007

Product in Market:
Dell Wireless Charging Mat - PM30W17:
http://www.dell.com/en-us/shop/dell-wireless-charging-mat-pm30w17/apd/580-agli/pc-accessories

Cloud-controlled quadcopter

Anuraag Vankayala, Amrutha Vasili

Cloud-controlled quadcopter

Featured Project

Idea:

To build a GPS-assisted, cloud-controlled quadcopter, for consumer-friendly aerial photography.

Design/Build:

We will be building a quad from the frame up. The four motors will each have electronic speed controllers,to balance and handle control inputs received from an 8-bit microcontroller(AP),required for its flight. The firmware will be tweaked slightly to allow flight modes that our project specifically requires. A companion computer such as the Erle Brain will be connected to the AP and to the cloud(EC2). We will build a codebase for the flight controller to navigate the quad. This would involve sending messages as per the MAVLink spec for sUAS between the companion computer and the AP to poll sensor data , voltage information , etc. The companion computer will also talk to the cloud via a UDP port to receive requests and process them via our code. Users make requests for media capture via a phone app that talks to the cloud via an internet connection.

Why is it worth doing:

There is currently no consumer-friendly solution that provides or lets anyone capture aerial photographs of them/their family/a nearby event via a simple tap on a phone. In fact, present day off-the-shelf alternatives offer relatively expensive solutions that require owning and carrying bulky equipment such as the quads/remotes. Our idea allows for safe and responsible use of drones as our proposed solution is autonomous, has several safety features, is context aware(terrain information , no fly zones , NOTAMs , etc.) and integrates with the federal airspace seamlessly.

End Product:

Quads that are ready for the connected world and are capable to fly autonomously, from the user standpoint, and can perform maneuvers safely with a very simplistic UI for the common user. Specifically, quads which are deployed on user's demand, without the hassle of ownership.

Similar products and comparison:

Current solutions include RTF (ready to fly) quads such as the DJI Phantom and the Kickstarter project, Lily,that are heavily user-dependent or user-centric.The Phantom requires you to carry a bulky remote with multiple antennas. Moreover,the flight radius could be reduced by interference from nearby conditions.Lily requires the user to carry a tracking device on them. You can not have Lily shoot a subject that is not you. Lily can have a maximum altitude of 15 m above you and that is below the tree line,prone to crashes.

Our solution differs in several ways.Our solution intends to be location and/or event-centric. We propose that the users need not own quads and user can capture a moment with a phone.As long as any of the users are in the service area and the weather conditions are permissible, safety and knowledge of controlling the quad are all abstracted. The only question left to the user is what should be in the picture at a given time.

Project Videos