Project

# Title Team Members TA Documents Sponsor
31 Enhanced Beverage Coaster
Christina Choi
Harrison Hsieh
Hung-Jui Chang
Nicholas Ratajczyk appendix0.pdf
final_paper0.docx
presentation0.pdf
proposal0.pdf
We are want to design a beverage coaster that has the ability to detect when drinks are low and capture data on drinking habits. We believe our project will be useful for restaurant workers because they will be able to spot near empty glasses more easily (especially in a dark environment), and they will be able to track how much of each beverage is usually consumed by customers.

Our enhanced beverage coaster will detect the amount of beverage left in the glass by using a pressure/weight sensor and will light up an LED to a certain color to make it easier to restaurant workers to spot near empty glasses. Also, we will be tracking the amount of beverage consumed by the customer using the pressure/weight sensor. Our coaster will also have a wireless chip that will relay data to a central location (probably a phone or computer for this prototype). We plan on probably using a coin cell battery to power out project.

We believe this project is challenging because it needs to be not too expensive, low power, and have the ability to transfer data wirelessly. Also, detecting the decrease in the amount of beverage in a glass can be tricky due to the glass being picked up in uncertain intervals by the customer.

Baseline:
-Pressure sensor working
-Able to detect a near empty glass
-Replay amount of beverage drunk by customer somewhere (probably phone)

The Dream:
-All of the above working
-Have a central module to transfer information to
-Able to select type of beverage before serving customer

Low Cost Distributed Battery Management System

Logan Rosenmayer, Daksh Saraf

Low Cost Distributed Battery Management System

Featured Project

Web Board Link: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=27207

Block Diagram: https://imgur.com/GIzjG8R

Members: Logan Rosenmayer (Rosenma2), Anthony Chemaly(chemaly2)

The goal of this project is to design a low cost BMS (Battery Management System) system that is flexible and modular. The BMS must ensure safe operation of lithium ion batteries by protecting the batteries from: Over temperature, overcharge, overdischarge, and overcurrent all at the cell level. Additionally, the should provide cell balancing to maintain overall pack capacity. Last a BMS should be track SOC(state of charge) and SOH (state of health) of the overall pack.

To meet these goals, we plan to integrate a MCU into each module that will handle measurements and report to the module below it. This allows for reconfiguration of battery’s, module replacements. Currently major companies that offer stackable BMSs don’t offer single cell modularity, require software adjustments and require sense wires to be ran back to the centralized IC. Our proposed solution will be able to remain in the same price range as other centralized solutions by utilizing mass produced general purpose microcontrollers and opto-isolators. This project carries a mix of hardware and software challenges. The software side will consist of communication protocol design, interrupt/sleep cycles, and power management. Hardware will consist of communication level shifting, MCU selection, battery voltage and current monitoring circuits, DC/DC converter all with low power draws and cost. (uAs and ~$2.50 without mounting)