# Title Team Members TA Documents Sponsor
Cheng Jin
Jun Pun Wong
Kausik Venkat
Xinrui Zhu design_document0.pdf
We want to build a robot that can handle orders & deliver food in restaurants. Patrons would have a alert mechanism (button) to call the waiter (our robot). Our kitchen would have internal transmission network (between robot, kitchen and tables) that would receive this request and then the robot would be dispatched to assist the customer. Patrons would also be able to place orders using the robot (LED screen). The restaurant staff would also be notified of the various orders which they would dispatch through the robot later on.

For the navigation, we have talked to a TA and the machine shop for advice. The TA suggested for this one-semester project, we could use fixed locations for our tables and map that to the micro-controller on the robot to program it on where to go. Greg from the machine shop also helped us suggest what wheels, motors could be used to build the robot. Currently, we are looking at a 4 wheel with 2 wheels that are driving the movement and 2 that are just following (they help support the load on the robot). We also talked with Greg on how to get the distance moved by the robot. He recommended that we can calculate the distance moved using data from the encoders that are attached to the wheels of our robot.

Bone Conduction Lock

Alexander Lee, Brandon Powers, Ramon Zarate

Featured Project

A lock that is unlocked using vibrations conducted through the bones in the user’s hand. The user wears a wristband containing a haptic motor. The haptic motor generates a vibration signal that acts as the "key" to the lock. When the user touches their finger to the lock, the signal is transmitted through the user’s hand and is received at the lock. If the lock receives the correct "key", then it unlocks.

Project Videos