# Title Team Members TA Documents Sponsor
11 Noninvasive PoC Anemia Detection Device
Jeremy Dejournett
Mythri Anumula
Yamuna Phal design_review
Anemia is a condition that affects nearly 2 billion people, according to the WHO.Anemia is an entirely preventable disease, and once detected, the patient can take corrective action to restore their iron levels to a healthy state. According to Miller et al, the probability that you are affected by anemia increases five-fold in underdeveloped geographies [1]. Current non-invasive POC detection methods can be relatively expensive, and are difficult to move from place to place which makes them all the more inaccessible to the geographies that need it most. We propose to build a more portable and cost effective non-invasive anemia detection method by combining image and spectroscopy based detection methods in a wearable device that can be taken to regions without adequate medical facilities and used to help diagnose this preventable disease.

Design Requirements
The device we build will be required to provide accurate binary diagnosis of anemia based on both the oxygen level from a fingertip pulse oximeter[2], and the hemoglobin level based on RGB heuristics given by the pallor of the conjunctiva [3]. Data collection hardware will include a low-resolution camera for detecting conjunctiva pallor and wide-band photodiodes for pulse oximetry measurements. The two detection methods will be encapsulated in a single, wearable, fingertip device that delivers at least 9 correct diagnoses out of 10. This will be accompanied by a wristband that carries the power, processing, and diagnosis indication subsystems. The device will deliver all 10 diagnoses on a single charge, and be able to deliver diagnoses even while charging.

The minimum viable product will deliver two complete detection systems for data capture, a processing system for data analysis and detection, a power system for delivering the required capacity and charging needs, and a diagnosis indicator to relay the results to the testing administrator.

The total cost of the assembled product should be less than $50.

Detection System Design
Pulse oximetry is done to non-invasively estimate the concentration of both Hb and HbO2 by measuring the absorption coefficients at two separate wavelengths [2]. We intend to use at least wideband photodiodes, each with a filter for either red (660nm) or near-infrared (940nm), that are activated by two distinct light sources at red and near-infrared, which illuminate the tip of the finger in a 50% duty cycle. The light that perfuses the tissue is then detected by an array of wide-band photodiodes that detect the light which is transmitted through the tissue. This waveform is then offloaded to the processing subsystem, which uses the information of which light source is currently active alongside the incoming waveform to compute the ratio of AC to DC components in the detected waveform. This ratio is taken at both wavelengths, and the ratio of these ratios is used alongside a lookup table to compute an estimate of the percent saturation of O2 in the blood.
The second method of detecting anemia is to look at conjunctival pallor. The conjunctiva is the mucous membrane that covers the front of your eye and lines the under-eyelid. For many patients with anemia, the conjunctiva is distinctly pale and lacks redness [3]. A healthy patient has a distinctly red conjunctiva [5]. A diagnosis for anemia can be made accurately when conjunctival pallor is examined and then combined with other methods of detecting Hb levels, such as the pulse oximetry method described above.


Smart Frisbee

Ryan Moser, Blake Yerkes, James Younce

Smart Frisbee

Featured Project

The idea of this project would be to improve upon the 395 project ‘Smart Frisbee’ done by a group that included James Younce. The improvements would be to create a wristband with low power / short range RF capabilities that would be able to transmit a user ID to the frisbee, allowing the frisbee to know what player is holding it. Furthermore, the PCB from the 395 course would be used as a point of reference, but significantly redesigned in order to introduce the transceiver, a high accuracy GPS module, and any other parts that could be modified to decrease power consumption. The frisbee’s current sensors are a GPS module, and an MPU 6050, which houses an accelerometer and gyroscope.

The software of the system on the frisbee would be redesigned and optimized to record various statistics as well as improve gameplay tracking features for teams and individual players. These statistics could be player specific events such as the number of throws, number of catches, longest throw, fastest throw, most goals, etc.

The new hardware would improve the frisbee’s ability to properly moderate gameplay and improve “housekeeping”, such as ensuring that an interception by the other team in the end zone would not be counted as a score. Further improvements would be seen on the software side, as the frisbee in it’s current iteration will score as long as the frisbee was thrown over the endzone, and the only way to eliminate false goals is to press a button within a 10 second window after the goal.