# Title Team Members TA Documents Sponsor
16 Lug-n-Go
Anika Manzo
Brianna Szczesuil
Gregg Lugo
Mickey Zhang design_review
We plan to design a carry-on sized bag that doubles as a motorized ride-able scooter. Instead of dragging your heavy luggage around the airport or across campus, step on the platform and ride it for a quick and convenient commute.

Rideable luggage is not necessarily a new idea. The Micro-Kickboard is a carry-on with a built-in platform to ride as a manual scooter. The Modobag is currently the only motorized luggage on the market--featuring a design that allows the rider to sit on the bag. Products like the Micro-Kickboard lack the convenience of electrical motors to take the strain off of the user. Stricter TSA guidelines and the staggering price point make Modobag a less viable option.

Essentially, we want to smash these ideas together, while conforming to the TSA restrictions and keeping the price of the product at a much more reasonable range. The motors of the Lug-n-GO will be powered by removable Lithium-Ion batteries. Additional features include a manual mode, where the user can pedal themselves forward and charge the batteries; charging ports for USB devices; and maybe a fingerprint scanner as well to prevent person riding away with someone else’s luggage.

Our design will consist of an off-the-shelf DC motor that is capable of a max speed of 10 mph. We will design our own motor controller system such that the user can squeeze the right lever to go and squeeze the left lever to brake. We will use lithium ion batteries that can easily be removed by the user. Our luggage design will also include a charging dock for the user to charge a phone. To do this, we will design voltage regulators that can adjust the the voltage of the lithium ion batteries to produce an acceptable voltage to charge a phone.

S.I.P. (Smart Irrigation Project)

Jackson Lenz, James McMahon

S.I.P. (Smart Irrigation Project)

Featured Project

Jackson Lenz

James McMahon

Our project is to be a reliable, robust, and intelligent irrigation controller for use in areas where reliable weather prediction, water supply, and power supply are not found.

Upon completion of the project, our device will be able to determine the moisture level of the soil, the water level in a water tank, and the temperature, humidity, insolation, and barometric pressure of the environment. It will perform some processing on the observed environmental factors to determine if rain can be expected soon, Comparing this knowledge to the dampness of the soil and the amount of water in reserves will either trigger a command to begin irrigation or maintain a command to not irrigate the fields. This device will allow farmers to make much more efficient use of precious water and also avoid dehydrating crops to death.

In developing nations, power is also of concern because it is not as readily available as power here in the United States. For that reason, our device will incorporate several amp-hours of energy storage in the form of rechargeable, maintenance-free, lead acid batteries. These batteries will charge while power is available from the grid and discharge when power is no longer available. This will allow for uninterrupted control of irrigation. When power is available from the grid, our device will be powered by the grid. At other times, the batteries will supply the required power.

The project is titled S.I.P. because it will reduce water wasted and will be very power efficient (by extremely conservative estimates, able to run for 70 hours without input from the grid), thus sipping on both power and water.

We welcome all questions and comments regarding our project in its current form.

Thank you all very much for you time and consideration!