Project

# Title Team Members TA Documents Sponsor
23 Full Movement Gaming Mouse
Drake Bernhard
Michael Bindon
Anthony Caton design_review
design_review
proposal
The project I would like to work on is a computer mouse that allows the thumb of the mouse hand to control a joystick like device. Some similar devices exist but they use a true joystick that has an awkward feel for directions. My focus is on providing better direction feel on the mouse thumb. The mouse will be built largely from scratch by integrating buttons, positioning laser, the joystick, and USB communication all with an FPGA.

The mouse will be powered through USB, the casing will be 3D printed when the product starts coming together more. The current team is 2 electrical engineers.

The joystick is a slider for analog in game left/right movement, the slider on the mouse will be roughly vertical where thumb down is left (or map-able to anything) and thumb up is right. This slider is combined with a rocking switch which has a central position as well as a pushed forward, pushed backward, and ideally pushed 2x forward for 4 digital positions. Likely project will only have 3 positions for simplicity and ease of part selecting.

Potential Parts list for providing rough idea of design:

Slider: Mouser Part # 652-PTA15432010CIB10 , OR 312-2045F-A100K OR 688-RS15H113CA05
USB Jack and cord, for example Mouser # 474-BOB-12700
Rocker switch ideally is of (ON)-OFF-(ON) type, few cadidates also from Mouser. Also have seen several multi (4+) position slider switches, but these seem less desirably for the feel.
FPGA - have not selected however have experience in Vivado with Artix 7 chip from ECE 437 using an Opal Kelly dev board. Not sure what is allowed as has as if it is ok to start with a basic board and integrate another board of our own design into the project. One possible https://www.xilinx.com/products/boards-and-kits/1-f3zdrn.html
Otherwise my requirements for the FPGA are probably not to difficult. Able to receive a few discrete signals from the rocker switch as well as an analog value from the slider. Will need to confirm voltage levels with the slider are compatable with FPGA. Also FPGA will need to be at lease USB 2.0 capable (as far as speed).
Optical sensing for mouse can be done from scratch or preferably with a board such as https://www.tindie.com/products/jkicklighter/adns-9800-laser-motion-sensor/ where all that is needed is SPI communication to FPGA.

-Drake

Control System and User Interface for Hydraulic Bike

Iain Brearton

Featured Project

Parker-Hannifin, a fluid power systems company, hosts an annual competition for the design of a chainless bicycle. A MechSE senior design team of mechanical engineers have created a hydraulic circuit with electromechanical valves, but need a control system, user interface, and electrical power for their system. The user would be able to choose between several operating modes (fluid paths), listed at the end.

My solution to this problem is a custom-designed control system and user interface. Based on sensor feedback and user inputs, the system would change operating modes (fluid paths). Additionally, the system could be improved to suggest the best operating mode by implementing a PI or PID controller. The system would not change modes without user interaction due to safety - previous years' bicycles have gone faster than 20mph.

Previous approaches to this problem have usually not included an electrical engineer. As a result, several teams have historically used commercially-available systems such as Parker's IQAN system (link below) or discrete logic due to a lack of technical knowledge (link below). Apart from these two examples, very little public documentation exists on the electrical control systems used by previous competitors, but I believe that designing a control system and user interface from scratch will be a unique and new approach to controlling the hydraulic system.

I am aiming for a 1-person team as there are 6 MechSE counterparts. I emailed Professor Carney on 10/3/14 and he thought the general concept was acceptable.

Operating modes, simplified:

Direct drive (rider's pedaling power goes directly to hydraulic motor)

Coasting (no power input, motor input and output "shorted")

Charge accumulators (store energy in expanding rubber balloons)

Discharge accumulators (use stored energy to supply power to motor)

Regenerative braking (use motor energy to charge accumulators)

Download Competition Specs: https://uofi.box.com/shared/static/gst4s78tcdmfnwpjmf9hkvuzlu8jf771.pdf

Team using IQAN system (top right corner): https://engineering.purdue.edu/ABE/InfoFor/CurrentStudents/SeniorProjects/2012/GeskeLamneckSparenbergEtAl

Team using discrete logic (page 19): http://deepblue.lib.umich.edu/bitstream/handle/2027.42/86206/ME450?sequence=1