# Title Team Members TA Documents Sponsor
8 Laser Tag Glove
Alexander Korfel
Carlos Lara
Keng Yan Lim
Jacob Bryan appendix
Our group wants to make a laser tag glove. The idea stems from childhood games where you pretend your hand is a gun. The index finger will emit the laser while the thumb acts as a trigger. We plan on using a contact sensor so the laser beam is shot every time you press your thumb against your index finger with a buzzer sound confirming the shot. The remaining three fingers will have flex sensors, which will ensure the hand has to be in a "finger gun" shape in order to work properly. Also, we will create a vest with 4 sensors in order to detect when each player is hit. At the moment we are planning on implementing the game for two players.

For record keeping, we plan on giving each player's glove an LCD display. The display will show statistics such as kills, deaths, and time remaining in the round. Player one will have 4 buttons to set the amount of lives and time the game will start with. If you are the last person standing or have the most lives once the timer runs out, you win the round and the LCD display will show that. We plan on making this battery powered, with the batteries located on the vest. In order to sync the players, we are planning to use WiFi.

RFI Detector

Jamie Brunskill, Tyler Shaw, Kyle Stevens

RFI Detector

Featured Project

Problem Statement:

Radio frequency interference from cell phones disrupts measurements at the radio observatory in Arecibo, Puerto Rico. Many visitors do not comply when asked to turn their phones off or put them in airplane mode.


We are planning to design a handheld device that will be able to detect radio frequency interference from cell phones from approximately one meter away. This will allow someone to determine if a phone has been turned off or is in airplane mode.

The device will feature an RF front end consisting of antennas, filters, and matching networks. Multiple receiver chains may be used for different bands if necessary. They will feed into a detection circuit that will determine if the power within a given band is above a certain threshold. This information will be sent to a microcontroller that will provide visual/audible user feedback.

Project Videos