# Title Team Members TA Documents Sponsor
6 Automatic Trumpet Tuner
Anthony Baldassone
James Lithgow
Lowie Rodriguez
Jacob Bryan design_review
A large problem in any musician’s life is tuning. The tuning of an instrument changes every single time you take it out of the case, and even while playing. This can be detrimental at times, especially on longer notes where you can definitely tell whether one member of a band is out of tune or not.

Our project goal is to create an automatic tuner that is self-contained (battery operated), can be placed on the tuning slide, will automatically adjust the tuning based on the note you are playing, and has a simple enough interface to give the musician feedback on whether they are sharp, flat, or in-tune while the auto-tuner is turned on.

Major challenges to be overcome are interference from other sound sources, power delivery to the system using only batteries, using current and previously captured data to enhance the tuner’s accuracy, and researching motors (possibly a linear actuator) that will have enough force to push the slide in and out while still having a low power requirement.

As far as we know, a product like this has not yet been created for a trumpet, and could easily be adapted for other brass instruments that face similar issues.

RFI Detector

Jamie Brunskill, Tyler Shaw, Kyle Stevens

RFI Detector

Featured Project

Problem Statement:

Radio frequency interference from cell phones disrupts measurements at the radio observatory in Arecibo, Puerto Rico. Many visitors do not comply when asked to turn their phones off or put them in airplane mode.


We are planning to design a handheld device that will be able to detect radio frequency interference from cell phones from approximately one meter away. This will allow someone to determine if a phone has been turned off or is in airplane mode.

The device will feature an RF front end consisting of antennas, filters, and matching networks. Multiple receiver chains may be used for different bands if necessary. They will feed into a detection circuit that will determine if the power within a given band is above a certain threshold. This information will be sent to a microcontroller that will provide visual/audible user feedback.

Project Videos