Project

# Title Team Members TA Documents Sponsor
7 Electronic Toilet Paper Dispenser and Tracker
Honorable Mention
Kevin Wang
William Rick
Kexin Hui design_document0.pdf
final_paper0.pdf
presentation0.pdf
proposal0.pdf
video
Group Members (Name - NetID):
Kevin Wang - klwang4
William Rick - wrick2

Title: Electronic Toilet Paper Dispenser and Tracker
IDEA post link: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=22549

Description:
Living with multiple roommates, one is often thinking, "I just bought toilet paper last week. How are we out already?" Our project is an electronic toilet paper dispenser and tracker that can reduce waste. Each roommate will have their own ID, with multiple ways to sign in to the toilet paper dispenser: RFID card, username and pin button input, and possibly NFC on their phone. Once signed in, we will use an infrared or ultrasound sensor to detect a wave of the hand, which will dispense one “serving” of toilet paper. (The serving size can be adjusted to accommodate different usage levels.) This will be accomplished using a geared DC motor, continuous rotation servo motor, or stepper motor, in a mechanism similar to that of an automatic paper towel dispenser. This will take experimentation to determine the most accurate method. Each roommate's usage will then be saved and displayed on an LCD screen along with other statistics and options.

Additional optional components may include a piezo beeper for sound alerts (an alarm when someone has taken way too much toilet paper in one sitting) and some LED’s to flash for different signals, such as when the toilet paper is low. Another feature we will add is alerting a user if the toilet paper is out at the moment when they sit down on the toilet. This can be done with an additional ultrasound or IR sensor to detect when a person has sat down or is near the toilet.

We intend to prototype using an Arduino, but then move to a PCB with an Atmel AVR ATMEGA* family microcontroller for a more permanent installation. The PCB will also contain the motor driving circuit and DC power regulation.The device will be powered by battery or DC power (6-12V).

Few current solutions exist for toilet paper and are not widespread. The closest product is the automatic paper towel dispenser in public restrooms, which only dispense based on a hand wave, but do not track usage in any way. Furthermore, there are no solutions in this space that track usage, not to mention usage for individual persons.

Recovery-Monitoring Knee Brace

Dong Hyun Lee, Jong Yoon Lee, Dennis Ryu

Featured Project

Problem:

Thanks to modern technology, it is easy to encounter a wide variety of wearable fitness devices such as Fitbit and Apple Watch in the market. Such devices are designed for average consumers who wish to track their lifestyle by counting steps or measuring heartbeats. However, it is rare to find a product for the actual patients who require both the real-time monitoring of a wearable device and the hard protection of a brace.

Personally, one of our teammates ruptured his front knee ACL and received reconstruction surgery a few years ago. After ACL surgery, it is common to wear a knee brace for about two to three months for protection from outside impacts, fast recovery, and restriction of movement. For a patient who is situated in rehabilitation after surgery, knee protection is an imperative recovery stage, but is often overlooked. One cannot deny that such a brace is also cumbersome to put on in the first place.

--------

Solution:

Our group aims to make a wearable device for people who require a knee brace by adding a health monitoring system onto an existing knee brace. The fundamental purpose is to protect the knee, but by adding a monitoring system we want to provide data and a platform for both doctor and patients so they can easily check the current status/progress of the injury.

---------

Audience:

1) Average person with leg problems

2) Athletes with leg injuries

3) Elderly people with discomforts

-----------

Equipment:

Temperature sensors : perhaps in the form of electrodes, they will be used to measure the temperature of the swelling of the knee, which will indicate if recovery is going smoothly.

Pressure sensors : they will be calibrated such that a certain threshold of force must be applied by the brace to the leg. A snug fit is required for the brace to fulfill its job.

EMG circuit : we plan on constructing an EMG circuit based on op-amps, resistors, and capacitors. This will be the circuit that is intended for doctors, as it will detect muscle movement.

Development board: our main board will transmit the data from each of the sensors to a mobile interface via. Bluetooth. The user will be notified when the pressure sensors are not tight enough. For our purposes, the battery on the development will suffice, and we will not need additional dry cells.

The data will be transmitted to a mobile system, where it would also remind the user to wear the brace if taken off. To make sure the brace has a secure enough fit, pressure sensors will be calibrated to determine accordingly. We want to emphasize the hardware circuits that will be supplemented onto the leg brace.

We want to emphasize on the hardware circuit portion this brace contains. We have tested the temperature and pressure resistors on a breadboard by soldering them to resistors, and confirmed they work as intended by checking with a multimeter.

Project Videos