Project

# Title Team Members TA Documents Sponsor
7 Electronic Toilet Paper Dispenser and Tracker
Kevin Wang
William Rick
Kexin Hui design_review
final_paper
presentation
proposal
video
Group Members (Name - NetID):
Kevin Wang - klwang4
William Rick - wrick2

Title: Electronic Toilet Paper Dispenser and Tracker
IDEA post link: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=22549

Description:
Living with multiple roommates, one is often thinking, "I just bought toilet paper last week. How are we out already?" Our project is an electronic toilet paper dispenser and tracker that can reduce waste. Each roommate will have their own ID, with multiple ways to sign in to the toilet paper dispenser: RFID card, username and pin button input, and possibly NFC on their phone. Once signed in, we will use an infrared or ultrasound sensor to detect a wave of the hand, which will dispense one “serving” of toilet paper. (The serving size can be adjusted to accommodate different usage levels.) This will be accomplished using a geared DC motor, continuous rotation servo motor, or stepper motor, in a mechanism similar to that of an automatic paper towel dispenser. This will take experimentation to determine the most accurate method. Each roommate's usage will then be saved and displayed on an LCD screen along with other statistics and options.

Additional optional components may include a piezo beeper for sound alerts (an alarm when someone has taken way too much toilet paper in one sitting) and some LED’s to flash for different signals, such as when the toilet paper is low. Another feature we will add is alerting a user if the toilet paper is out at the moment when they sit down on the toilet. This can be done with an additional ultrasound or IR sensor to detect when a person has sat down or is near the toilet.

We intend to prototype using an Arduino, but then move to a PCB with an Atmel AVR ATMEGA* family microcontroller for a more permanent installation. The PCB will also contain the motor driving circuit and DC power regulation.The device will be powered by battery or DC power (6-12V).

Few current solutions exist for toilet paper and are not widespread. The closest product is the automatic paper towel dispenser in public restrooms, which only dispense based on a hand wave, but do not track usage in any way. Furthermore, there are no solutions in this space that track usage, not to mention usage for individual persons.

LED Cube

Michael Lin, Raymond Yeh

LED Cube

Featured Project

LED technology is more advanced and much more efficient than traditional incandescent light bulbs and as such our team decided we wanted to build a device related to LEDs. An LED cube is inherently aesthetically pleasing and ours will be capable of displaying 3D animations and lighting patterns with much increased complexity compared to any 2D display of comparable resolution. Environmental interaction will also be able to control the various lighting effects on the cube. Although our plan is for a visually pleasing cube, our implementation can easily be adapted for more practical applications such as displaying 3D models.