# Title Team Members TA Documents Sponsor
19 SCARA Drawing Robot
Bingzhe Wei
Chenghao Duan
Tianhao Chi
Dongwei Shi other
Members: Bingzhe Wei (bwei6) Tianhao Chi (tchi3) Chenghao Duan (cduan2)

Title: SCARA Drawing Robot


We propose to develop a drawing robot based on an SCARA robot arm Overall system processing flow will be as follows:
1. User inputs image to image-processing program on PC.
2. Image processing with program on PC:
a. Style transfer via deep neural networks
b. Clustering of similar colors
c. Pixel fill algorithm to convert to vector strokes
3. Vectors sent to microcontroller program via USB or similar.
4. Microcontroller program does inverse kinematics and commands motors as necessary.

The combination of the SCARA design and stepper motors will enable a very stable and fast drawing platform, while the proposed image processing algorithms enable multiple, arbitrary styles and provide high-quality visual effects. We expect steppers will reduce the need for control.

Proposed circuit will contain an USB-to-Serial converter IC, ATmega644 microcontroller, stepper motor controllers, and optical phototransistors for feedback control, as well as associated support circuitry. We use an ATmega644 with 4K of RAM, double that of ATmega328 as found in regular Arduinos to ensure enough capacity for inverse kinematics, while power will be supplied via a standard wall plug adapter that outputs 12V DC.

Our team also has access to GPUs for training deep neural networks.

Our team members have taken the following courses:

ECE 470 - Robotics
ECE 486 - Control System
SE 423 - Mechatronics
ECE 515 - Control Theory and Design

ECE 547 - Topics in Image Processing - Deep Learning
CS 598 PS - Machine Learning For Signal Processing

Logic Circuit Teaching Board

Younas Abdul Salam, Andrzej Borzecki, David Lee

Featured Project

Partners: Younas Abdul Salam, Andrzej Borzecki, David Lee

The proposal our group has is of creating a board that will be able to teach students about logic circuits hands on. The project will consist of a board and different pieces that represent gates. The board will be used to plug in the pieces and provide power to the internal circuitry of the pieces. The pieces will have a gate and LEDs inside, which will be used to represent the logic at the different terminals.

By plugging in and combining gates, students will be able to see the actual effect on logic from the different combinations that they make. To add to it, we will add a truth table that can be used to represent inputs and outputs required, for example, for a class project or challenge. The board will be able to read the truth table and determine whether the logic the student has created is correct.

This board can act as a great learning source for students to understand the working of logic circuits. It can be helpful in teaching logic design to students in high schools who are interested in pursuing a degree in Electrical Engineering.

Please comment on whether the project is good enough to be approved, and if there are any suggestions.

Thank you