Project

# Title Team Members TA Documents Sponsor
22 SLAM on smartphones
Area Award: Smartphone Technology
Fengyuanshan Xu
Yixiao Lin
design_document0.doc
final_paper0.doc
presentation0.presentation
proposal0.pdf
A spinning platform will be assembled on the moving robot. A ultrasonic sensor would be mount on top of the platform. The ultrasonic sensor will get the distance between the current robot to the surrounding objects and transfer it's own distance data to an arduino board. The arduino board will convert the data to become the format that a smart phone can process. Then, the processed information would be sent to a smart phone.

Then we want to connect our mapping system to a robotic programming platform called starL.
StarL can use a smartphone paired with a robot(irobot create) using Bluetooth and control it's movement. It is also capable of communication between robots.
After we have a self mapping system connected with starL, we would like to make it distributed, which means a number of robots working together to map some space. We are going to combine the distance information generated from each individual robot. By knowing the start position of every robot, this enables the robots to know the relative position to each other.

This project would require a power source, a circuit that helps control the motor, some sensor data filtering circuit, one motor for the spinning platform, C coding on arduino to process sensor data, java coding on android phone. We may need to add a circuit that helps transfer data from arduino to the phone.

Dynamic Legged Robot

Joseph Byrnes, Kanyon Edvall, Ahsan Qureshi

Featured Project

We plan to create a dynamic robot with one to two legs stabilized in one or two dimensions in order to demonstrate jumping and forward/backward walking. This project will demonstrate the feasibility of inexpensive walking robots and provide the starting point for a novel quadrupedal robot. We will write a hybrid position-force task space controller for each leg. We will use a modified version of the ODrive open source motor controller to control the torque of the joints. The joints will be driven with high torque off-the-shelf brushless DC motors. We will use high precision magnetic encoders such as the AS5048A to read the angles of each joint. The inverse dynamics calculations and system controller will run on a TI F28335 processor.

We feel that this project appropriately brings together knowledge from our previous coursework as well as our extracurricular, research, and professional experiences. It allows each one of us to apply our strengths to an exciting and novel project. We plan to use the legs, software, and simulation that we develop in this class to create a fully functional quadruped in the future and release our work so that others can build off of our project. This project will be very time intensive but we are very passionate about this project and confident that we are up for the challenge.

While dynamically stable quadrupeds exist— Boston Dynamics’ Spot mini, Unitree’s Laikago, Ghost Robotics’ Vision, etc— all of these robots use custom motors and/or proprietary control algorithms which are not conducive to the increase of legged robotics development. With a well documented affordable quadruped platform we believe more engineers will be motivated and able to contribute to development of legged robotics.

More specifics detailed here:

https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=30338

Project Videos