Project

# Title Team Members TA Documents Sponsor
22 SLAM on smartphones
Area Award: Smartphone Technology
Fengyuanshan Xu
Yixiao Lin
design_document0.doc
final_paper0.doc
presentation0.presentation
proposal0.pdf
A spinning platform will be assembled on the moving robot. A ultrasonic sensor would be mount on top of the platform. The ultrasonic sensor will get the distance between the current robot to the surrounding objects and transfer it's own distance data to an arduino board. The arduino board will convert the data to become the format that a smart phone can process. Then, the processed information would be sent to a smart phone.

Then we want to connect our mapping system to a robotic programming platform called starL.
StarL can use a smartphone paired with a robot(irobot create) using Bluetooth and control it's movement. It is also capable of communication between robots.
After we have a self mapping system connected with starL, we would like to make it distributed, which means a number of robots working together to map some space. We are going to combine the distance information generated from each individual robot. By knowing the start position of every robot, this enables the robots to know the relative position to each other.

This project would require a power source, a circuit that helps control the motor, some sensor data filtering circuit, one motor for the spinning platform, C coding on arduino to process sensor data, java coding on android phone. We may need to add a circuit that helps transfer data from arduino to the phone.

Electronic Automatic Transmission for Bicycle

Tianqi Liu, Ruijie Qi, Xingkai Zhou

Featured Project

Tianqi Liu(tliu51)

Ruijie Qi(rqi2)

Xingkai Zhou(xzhou40)

Sometimes bikers might not which gear is the optimal one to select. Bicycle changes gears by pulling or releasing a steel cable mechanically. We could potentially automate gear changing by hooking up a servo motor to the gear cable. We could calculate the optimal gear under current condition by using several sensors: two hall effect sensors, one sensing cadence from the paddle and the other one sensing the overall speed from the wheel, we could also use pressure sensors on the paddle to determine how hard the biker is paddling. With these sensors, it would be sufficient enough for use detect different terrains since the biker tend to go slower and pedal slower for uphill or go faster and pedal faster for downhill. With all these information from the sensors, we could definitely find out the optimal gear electronically. We plan to take care of the shifting of rear derailleur, if we have more time we may consider modifying the front as well.

Besides shifting automatically, we plan to add a manual mode to our project as well. With manual mode activated, the rider could override the automatic system and select the gear on its own.

We found out another group did electronic bicycle shifting in Spring 2016, but they didn't have a automatic function and didn't have the sensor set-up like ours. Commercially, both SRAM and SHIMANO have electronic shifting products, but these products integrate the servo motor inside the derailleurs, and they have a price tag over $1000. Only professionals or rich enthusiasts can have a hand on them. As our system could potentially serve as an add-on device to all bicycles with gears, it would be much cheaper.

Project Videos