Project

# Title Team Members TA Documents Sponsor
53 Multistage coil gun part 2
Area Award: Teamwork and Collaboration
Alejandro Esteban Otero
Changkun Li
Theodore Culbertson
Jackson Lenz design_document0.pdf
final_paper0.pdf
presentation0.pdf
proposal0.pdf
Our project is a continuation of the coil gun project that was started by Jonathan Dagdagan, Shashvat Nanavati, and Yohan Ko in 2013. They were able to build a three stage coilgun and fire it successfully, but the project still had several issues that need to be addressed. To begin with, the SCR cannot handle the voltage put across them during firing. We must find a way to reduce the stress on the SCR, or they will have to be replaced after every firing. We have thought about implementing an isolation transformer to achieve this goal. In order to reduce the current stress of the SCRs we would study the behavior of the circuit when adding SCRs in parallel for each transformer.

To increase the speed of the projectile and prevent the SCRs from blowing up we would include a diode and a resistance in parallel with the coils so that the energy stored in the inductor is dissipated quickly. We also intend to add several features to improve usability, including displays to show the speed of the projectile and charge of the capacitors.

Once the coil gun can be test fired reliably, we will do simulations and collect data to maximize the velocity of the projectile by altering placement of the coils and timing of the triggers.

Cypress Robot Kit

Todd Nguyen, Byung Joo Park, Alvin Wu

Cypress Robot Kit

Featured Project

Cypress is looking to develop a robotic kit with the purpose of interesting the maker community in the PSOC and its potential. We will be developing a shield that will attach to a PSoC board that will interface to our motors and sensors. To make the shield, we will design our own PCB that will mount on the PSoC directly. The end product will be a remote controlled rover-like robot (through bluetooth) with sensors to achieve line following and obstacle avoidance.

The modules that we will implement:

- Motor Control: H-bridge and PWM control

- Bluetooth Control: Serial communication with PSoC BLE Module, and phone application

- Line Following System: IR sensors

- Obstacle Avoidance System: Ultrasonic sensor

Cypress wishes to use as many off-the-shelf products as possible in order to achieve a “kit-able” design for hobbyists. Building the robot will be a plug-and-play experience so that users can focus on exploring the capabilities of the PSoC.

Our robot will offer three modes which can be toggled through the app: a line following mode, an obstacle-avoiding mode, and a manual-control mode. In the manual-control mode, one will be able to control the motors with the app. In autonomous modes, the robot will be controlled based off of the input from the sensors.