Project

# Title Team Members TA Documents Sponsor
57 Water Aliasing
Atreyee Roy
Siddharth Sharma
Luke Wendt design_document0.pdf
design_document0.pdf
design_document0.pdf
final_paper0.pdf
photo0.jpg
presentation0.pptx
proposal0.pdf
Members:

Atreyee Roy - aroy10
Siddharth Sharma - srsharm2

Idea:

During the pitching session, our TA Luke Wendt talked about the Water Aliasing Project that we immediately took an interest in. The basic idea behind this project is to create an illusion by playing around with the frequency of water and the frequency of a strobe light. Even though many people have performed this experiment already, we plan to add some additional features to our design so it is more interactive for the user and does more than simply levitate or move up or down.

Hardware Description:

We will need to create the circuit for the strobe light that we plan to have on the side panels of our system so it can illuminate multiple columns of water. We will design a panel of LEDs that will be on for short bursts of time to have very sharp droplets visible. Ideally we plan to design this strobe light circuit with comparators, transistors (>10 A), and regulators, along with other generic components that we may need as we figure out the circuit. These will be mainly needed to create the short bursts of light (really narrow input signals). We plan to generate and control the frequency of our strobe light with a signal generator, so it is easy to change or maintain the frequency we need for any particular mode (up, down, still).

For the water, we plan to create 4 columns, each pipe from a water pump to recycle the water used, to be run at independent frequencies with small speakers. We looked into Piezoelectric benders (coin type speakers) that are tiny and their frequencies and start and stop times can be controlled with extreme precision. They also happen to be cheaper than other options.

Software Description:

We plan to integrate user interfacing in this project. What we envisioned is a simple app that has three buttons arranged one below the other, in 4 columns- one for each column of water. Through this app, we can control the up and down, or still, motion of each column of water independently. Then, simultaneously each column can have a different movement, based on the user’s wish. We plan to transmit a bluetooth signal with our app, which will be received by our controller to alter the frequencies of the speakers as required. This will be achieved by our code for the controller design.

We expect that once we can figure out how to transmit even one of these commands to the controller, the rest will be a matter of scaling and we can have the user play with the controls on the app to make the water flow as desired.

Important concerns regarding safety:

Since this is a water based project, we plan to do it on a small scale so it is easy to work on and portable eventually. We may encase the entire system in a glass box, with the strobe lights on the sides. We think this will also give it an aesthetic value, while being contained and safe, minimising spillage.

Background:

Our team consists of an Electrical Engineer and a Computer Engineer, with background in microelectronic circuit design, control systems, artificial intelligence, machine learning, along with a strong coding background.

Cloud-controlled quadcopter

Anuraag Vankayala, Amrutha Vasili

Cloud-controlled quadcopter

Featured Project

Idea:

To build a GPS-assisted, cloud-controlled quadcopter, for consumer-friendly aerial photography.

Design/Build:

We will be building a quad from the frame up. The four motors will each have electronic speed controllers,to balance and handle control inputs received from an 8-bit microcontroller(AP),required for its flight. The firmware will be tweaked slightly to allow flight modes that our project specifically requires. A companion computer such as the Erle Brain will be connected to the AP and to the cloud(EC2). We will build a codebase for the flight controller to navigate the quad. This would involve sending messages as per the MAVLink spec for sUAS between the companion computer and the AP to poll sensor data , voltage information , etc. The companion computer will also talk to the cloud via a UDP port to receive requests and process them via our code. Users make requests for media capture via a phone app that talks to the cloud via an internet connection.

Why is it worth doing:

There is currently no consumer-friendly solution that provides or lets anyone capture aerial photographs of them/their family/a nearby event via a simple tap on a phone. In fact, present day off-the-shelf alternatives offer relatively expensive solutions that require owning and carrying bulky equipment such as the quads/remotes. Our idea allows for safe and responsible use of drones as our proposed solution is autonomous, has several safety features, is context aware(terrain information , no fly zones , NOTAMs , etc.) and integrates with the federal airspace seamlessly.

End Product:

Quads that are ready for the connected world and are capable to fly autonomously, from the user standpoint, and can perform maneuvers safely with a very simplistic UI for the common user. Specifically, quads which are deployed on user's demand, without the hassle of ownership.

Similar products and comparison:

Current solutions include RTF (ready to fly) quads such as the DJI Phantom and the Kickstarter project, Lily,that are heavily user-dependent or user-centric.The Phantom requires you to carry a bulky remote with multiple antennas. Moreover,the flight radius could be reduced by interference from nearby conditions.Lily requires the user to carry a tracking device on them. You can not have Lily shoot a subject that is not you. Lily can have a maximum altitude of 15 m above you and that is below the tree line,prone to crashes.

Our solution differs in several ways.Our solution intends to be location and/or event-centric. We propose that the users need not own quads and user can capture a moment with a phone.As long as any of the users are in the service area and the weather conditions are permissible, safety and knowledge of controlling the quad are all abstracted. The only question left to the user is what should be in the picture at a given time.

Project Videos