Project

# Title Team Members TA Documents Sponsor
52 Carney Confocal Microscopy
Hyunjae Cho
Sung Hun Kim
Ye Hyun Kim
Luke Wendt design_document0.docx
final_paper0.pdf
presentation0.pptx
proposal0.pdf
Problem: Confocal Microscopy is an optical imaging technique for obtaining high resolution of mostly used in biological science. Confocal microscope uses point illumination method and discards any other stray light. Conventionally, to measure different points of sample, we had to change the angle of the light, so that it can measure different points of sample. This method may cause inaccuracy in imaging the object, since if the angle is slightly off, the light may not transmit through the pinhole, and cannot detect the image properly. In an attempt to resolve these drawbacks, we will be using 4 piezos to control the glass side. Using this method will not require changing the angle of the light anymore.

Solution: Below the glass slides, we will insert 4 piezos to control the Z-axis. In this way, we can control the height, and by controlling individual piezos, we can also tilt the glass slides. In order to function this way, we need to use a microcontroller unit, and control the piezeos. Afterwards, we need to program the device using C-language, so that the glass slide can move in Z-axis. Before implementing into the confocal microscope, we will test whether the piezos perform properly by verifying the positions. Since we are working in a nanometer scale, we need a light source and a photo-detector, and measure the speed taken. In this way, we can measure the distance moved, and confirm whether the glass slide has moved as we have expected.

Challenge: This project requires measuring in nanometer scale, which is not really visible to human eyes. Consequently, we would need to work on using light source and photo-detector, which requires the usage of programming. Although we have not explicitly learned to program the microcontroller unit, we can analyze the datasheet. Also, we would need a very sensitive photo-detector to measure the speed taken.

Ye Hyun Kim (ykim102)

Sung Hun Kim (skim113)

Hyunjae Cho (cho135)

Prosthetic Control Board

Caleb Albers, Daniel Lee

Prosthetic Control Board

Featured Project

Psyonic is a local start-up that has been working on a prosthetic arm with an impressive set of features as well as being affordable. The current iteration of the main hand board is functional, but has limitations in computational power as well as scalability. In lieu of this, Psyonic wishes to switch to a production-ready chip that is an improvement on the current micro controller by utilizing a more modern architecture. During this change a few new features would be added that would improve safety, allow for easier debugging, and fix some issues present in the current implementation. The board is also slated to communicate with several other boards found in the hand. Additionally we are looking at the possibility of improving the longevity of the product with methods such as conformal coating and potting.

Core Functionality:

Replace microcontroller, change connectors, and code software to send control signals to the motor drivers

Tier 1 functions:

Add additional communication interfaces (I2C), and add temperature sensor.

Tier 2 functions:

Setup framework for communication between other boards, and improve board longevity.

Overview of proposed changes by affected area:

Microcontroller/Architecture Change:

Teensy -> Production-ready chip (most likely ARM based, i.e. STM32 family of processors)

Board:

support new microcontroller, adding additional communication interfaces (I2C), change to more robust connector. (will need to design pcb for both main control as well as finger sensors)

Sensor:

Addition of a temperature sensor to provide temperature feedback to the microcontroller.

Software:

change from Arduino IDE to new toolchain. (ARM has various base libraries such as mbed and can be configured for use with eclipse to act as IDE) Lay out framework to allow communication from other boards found in other parts of the arm.