Project

# Title Team Members TA Documents Sponsor
52 Carney Confocal Microscopy
Hyunjae Cho
Sung Hun Kim
Ye Hyun Kim
Luke Wendt design_document0.docx
final_paper0.pdf
presentation0.pptx
proposal0.pdf
Problem: Confocal Microscopy is an optical imaging technique for obtaining high resolution of mostly used in biological science. Confocal microscope uses point illumination method and discards any other stray light. Conventionally, to measure different points of sample, we had to change the angle of the light, so that it can measure different points of sample. This method may cause inaccuracy in imaging the object, since if the angle is slightly off, the light may not transmit through the pinhole, and cannot detect the image properly. In an attempt to resolve these drawbacks, we will be using 4 piezos to control the glass side. Using this method will not require changing the angle of the light anymore.

Solution: Below the glass slides, we will insert 4 piezos to control the Z-axis. In this way, we can control the height, and by controlling individual piezos, we can also tilt the glass slides. In order to function this way, we need to use a microcontroller unit, and control the piezeos. Afterwards, we need to program the device using C-language, so that the glass slide can move in Z-axis. Before implementing into the confocal microscope, we will test whether the piezos perform properly by verifying the positions. Since we are working in a nanometer scale, we need a light source and a photo-detector, and measure the speed taken. In this way, we can measure the distance moved, and confirm whether the glass slide has moved as we have expected.

Challenge: This project requires measuring in nanometer scale, which is not really visible to human eyes. Consequently, we would need to work on using light source and photo-detector, which requires the usage of programming. Although we have not explicitly learned to program the microcontroller unit, we can analyze the datasheet. Also, we would need a very sensitive photo-detector to measure the speed taken.

Ye Hyun Kim (ykim102)

Sung Hun Kim (skim113)

Hyunjae Cho (cho135)

Interactive Proximity Donor Wall Illumination

Sungmin Jang, Anita Jung, Zheng Liu

Interactive Proximity Donor Wall Illumination

Featured Project

Team Members:

Anita Jung (anitaj2)

Sungmin Jang (sjang27)

Zheng Liu (zliu93)

Link to the idea: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=27710

Problem:

The Donor Wall on the southwest side of first floor in ECEB is to celebrate and appreciate everyone who helped and donated for ECEB.

However, because of poor lighting and color contrast between the copper and the wall behind, donor names are not noticed as much as they should, especially after sunset.

Solution Overview:

Here is the image of the Donor Wall:

http://buildingcampaign.ece.illinois.edu/files/2014/10/touched-up-Donor-wall-by-kurt-bielema.jpg

We are going to design and implement a dynamic and interactive illuminating system for the Donor Wall by installing LEDs on the background. LEDs can be placed behind the names to softly illuminate each name. LEDs can also fill in the transparent gaps in the “circuit board” to allow for interaction and dynamic animation.

And our project’s system would contain 2 basic modes:

Default mode: When there is nobody near the Donor Wall, the names are softly illuminated from the back of each name block.

Moving mode: When sensors detect any stimulation such as a person walking nearby, the LEDs are controlled to animate “current” or “pulses” flowing through the “circuit board” into name boards.

Depending on the progress of our project, we have some additional modes:

Pressing mode: When someone is physically pressing on a name block, detected by pressure sensors, the LEDs are controlled to

animate scattering of outgoing light, just as if a wave or light is emitted from that name block.

Solution Components:

Sensor Subsystem:

IR sensors (PIR modules or IR LEDs with phototransistor) or ultrasonic sensors to detect presence and proximity of people in front of the Donor Wall.

Pressure sensors to detect if someone is pressing on a block.

Lighting Subsystem:

A lot of LEDs is needed to be installed on the PCBs to be our lighting subsystem. These are hidden as much as possible so that people focus on the names instead of the LEDs.

Controlling Subsystem:

The main part of the system is the controlling unit. We plan to use a microprocessor to process the signal from those sensors and send signal to LEDs. And because the system has different modes, switching between them correctly is also important for the project.

Power Subsystem:

AC (Wall outlet; 120V, 60Hz) to DC (acceptable DC voltage and current applicable for our circuit design) power adapter or possible AC-DC converter circuit

Criterion for success:

Whole system should work correctly in each mode and switch between different modes correctly. The names should be highlighted in a comfortable and aesthetically pleasing way. Our project is acceptable for senior design because it contains both hardware and software parts dealing with signal processing, power, control, and circuit design with sensors.

Project Videos