Project

# Title Team Members TA Documents Sponsor
42 Automated Grain Quality Test Kit for Farmers in Developing Countries
Adam Long
Joan Brown
Kevin Villanueva
Luke Wendt design_document0.pdf
design_document0.pdf
design_document0.pdf
final_paper0.pdf
presentation0.pptx
proposal0.pdf
This project was pitched by the Beckman Institute for Advanced Science and Technology and the Institute for the Prevention of Postharvest Loss in the College of Agricultural, Consumer and Environmental Sciences (ACES)


Problem: Small farmers in developing countries lack the ability to analyze the quality of their product. With the proper resources, they would be able to analytically show the quality their product and sell it at higher margins.



Solution: A low cost, portable Grain Measurement Quality (GMQ) Kit that would be able to automatically collect and wirelessly transmit testing data on corn quality via GSM to a Farmer Portal.

The kit will include measurements of: and method/sensor

Corn Temperature: thermistor

Corn Humidity: relative humidity sensor

Corn Color: RGB color sensor

Impurity of Sample: a two-level sieve to separate unwanted large non-kernel material such as husk remnants and stones and unwanted small material such as broken kernels.



The kit shall be portable and handle a sample size of appx. 100 kernels. Samples should be taken from each sack of corn with the data applied to each of their respective sacks. The kit will be powered by rechargeable batteries. The system will also include documentation for conducting the tests that are easy to follow for farmers in developing countries.



The kit is will be in the form of a briefcase. It will have an attached tablet, or low-cost alternative, to display and record the test data. There will be two distinct sections of the kit; the first will be used for temperature, humidity, and impurity measurements. The sample of appx. 100 kernels will be dumped into this section where they will pass layered sieves. A scale will be at the bottom of the leveled sieves, and the data will be recorded by the tablet via a wired connection. The sieves will then be removed by the user and new data points will be recorded to show the impurity of the sample. A thermistor and humidity sensor in the center of the remaining kernels will allow us to acquire the temperature and humidity of the corn. The second section will be adjacent to the first and focus on corn color. An RGB color sensor connected to the tablet will be used to acquire the color of an individual kernel placed on the covered sensor. All the data recorded will be compared to quality standards and the results given back to the user through the tablet.



Challenges:

Ensuring a low-cost solution

Ensuring a long battery life, as users will likely have limited access to electricity

Appropriate accuracy of measurements

Interactive Proximity Donor Wall Illumination

Sungmin Jang, Anita Jung, Zheng Liu

Interactive Proximity Donor Wall Illumination

Featured Project

Team Members:

Anita Jung (anitaj2)

Sungmin Jang (sjang27)

Zheng Liu (zliu93)

Link to the idea: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=27710

Problem:

The Donor Wall on the southwest side of first floor in ECEB is to celebrate and appreciate everyone who helped and donated for ECEB.

However, because of poor lighting and color contrast between the copper and the wall behind, donor names are not noticed as much as they should, especially after sunset.

Solution Overview:

Here is the image of the Donor Wall:

http://buildingcampaign.ece.illinois.edu/files/2014/10/touched-up-Donor-wall-by-kurt-bielema.jpg

We are going to design and implement a dynamic and interactive illuminating system for the Donor Wall by installing LEDs on the background. LEDs can be placed behind the names to softly illuminate each name. LEDs can also fill in the transparent gaps in the “circuit board” to allow for interaction and dynamic animation.

And our project’s system would contain 2 basic modes:

Default mode: When there is nobody near the Donor Wall, the names are softly illuminated from the back of each name block.

Moving mode: When sensors detect any stimulation such as a person walking nearby, the LEDs are controlled to animate “current” or “pulses” flowing through the “circuit board” into name boards.

Depending on the progress of our project, we have some additional modes:

Pressing mode: When someone is physically pressing on a name block, detected by pressure sensors, the LEDs are controlled to

animate scattering of outgoing light, just as if a wave or light is emitted from that name block.

Solution Components:

Sensor Subsystem:

IR sensors (PIR modules or IR LEDs with phototransistor) or ultrasonic sensors to detect presence and proximity of people in front of the Donor Wall.

Pressure sensors to detect if someone is pressing on a block.

Lighting Subsystem:

A lot of LEDs is needed to be installed on the PCBs to be our lighting subsystem. These are hidden as much as possible so that people focus on the names instead of the LEDs.

Controlling Subsystem:

The main part of the system is the controlling unit. We plan to use a microprocessor to process the signal from those sensors and send signal to LEDs. And because the system has different modes, switching between them correctly is also important for the project.

Power Subsystem:

AC (Wall outlet; 120V, 60Hz) to DC (acceptable DC voltage and current applicable for our circuit design) power adapter or possible AC-DC converter circuit

Criterion for success:

Whole system should work correctly in each mode and switch between different modes correctly. The names should be highlighted in a comfortable and aesthetically pleasing way. Our project is acceptable for senior design because it contains both hardware and software parts dealing with signal processing, power, control, and circuit design with sensors.

Project Videos