Project

# Title Team Members TA Documents Sponsor
61 Cyclist Health Alert
Yingzheng Shi
Yuanqing Li
Yutian Sheng
Luke Wendt design_document0.pdf
final_paper0.pdf
presentation0.pdf
proposal0.pdf
video0.mov
Our goal is to design a bicycle device that could detect the physical condition and will sent alert if the physical condition fell below a threshold.

Features:
Generate electricity from mechanical source of bicycle to power the detector
Heart rate sensor (and a bio-related sweat sensor) will be inside the bike handle
The pressure sensor will be built in the saddle and both pedals
The accelerometer will be used for collision detection

Function: All sensors are connected to the power system (from mechanical energy) by wires, but they also have a secondary battery. The sensor in bike handle can check the heart rate and (salt %) to determine if the biker is in a safe physical condition. When the sensor notices it after analyzing the data, it can alert the biker to stop or to take a rest. The volume of the alert will be gentle and increase gradually.
If all pressure sensors detect pretty small value, the system will consider that the person is thrown off the bike unless he or she hits the button on the bike. We also implement a delayed emergency response system that gives enough time for user to cancel it. This feature is set to off at the beginning, the biker can choose whether to open it. For example, they can only use this feature when they are going to cycle in the some unsafe places or somewhere with few people. The collision detector will analyze the change of acceleration.

Logic Circuit Teaching Board

Younas Abdul Salam, Andrzej Borzecki, David Lee

Featured Project

Partners: Younas Abdul Salam, Andrzej Borzecki, David Lee

The proposal our group has is of creating a board that will be able to teach students about logic circuits hands on. The project will consist of a board and different pieces that represent gates. The board will be used to plug in the pieces and provide power to the internal circuitry of the pieces. The pieces will have a gate and LEDs inside, which will be used to represent the logic at the different terminals.

By plugging in and combining gates, students will be able to see the actual effect on logic from the different combinations that they make. To add to it, we will add a truth table that can be used to represent inputs and outputs required, for example, for a class project or challenge. The board will be able to read the truth table and determine whether the logic the student has created is correct.

This board can act as a great learning source for students to understand the working of logic circuits. It can be helpful in teaching logic design to students in high schools who are interested in pursuing a degree in Electrical Engineering.

Please comment on whether the project is good enough to be approved, and if there are any suggestions.

Thank you