Project

# Title Team Members TA Documents Sponsor
24 Smart Closet
Luchuan Zhang
Yiwei Li
Luke Wendt design_document0.pdf
design_document0.pdf
final_paper0.pdf
presentation0.pptx
presentation0.pptx
proposal0.pdf
video
The problems: It's hard for people to organize their clothes in traditional closet, and easily forget which clothes they already have when they want to buy new clothes online or in store. Forget which clothes should do laundry.

Existed solutions: Mostly are customized traditional closets. Some smart closet apps need users to take pictures and upload, too time-consuming. And these apps do not associated with users' closets.

Our solution: The closet will take pictures of any new add clothes. It will count the days you worn each clothes and display on the phone. It can indicate which clothes to pick and to wash by different color of LED on clothes hanger and notice you when the laundry basket is full.

Hardware: A motor controlled rotatable rack. On the rack there are around 20 gates to place clothes, each gate has a number assigned. A control panel (micro controller is expected) decides how long rack should rotate, when to photo, and use WiFi to connect with phone. A photo booth aside. LED system to indicate which clothes to pick also controlled by micro-controller. Weight sensor to measure the weight of laundry basket also linked to controller. This micro-controller may infer to Raspberry Pi.

Software: Phone app. Each clothes has a database: type, picture (new clothes will have no picture), number of the gate (will be assigned a new number if put in again and will be null if clothes is outside of closet), status of need photo or not, and worn days. App will send the specific gate number to the control panel, and all the information control panel get will be updated on the phone.

Electronic Automatic Transmission for Bicycle

Tianqi Liu, Ruijie Qi, Xingkai Zhou

Featured Project

Tianqi Liu(tliu51)

Ruijie Qi(rqi2)

Xingkai Zhou(xzhou40)

Sometimes bikers might not which gear is the optimal one to select. Bicycle changes gears by pulling or releasing a steel cable mechanically. We could potentially automate gear changing by hooking up a servo motor to the gear cable. We could calculate the optimal gear under current condition by using several sensors: two hall effect sensors, one sensing cadence from the paddle and the other one sensing the overall speed from the wheel, we could also use pressure sensors on the paddle to determine how hard the biker is paddling. With these sensors, it would be sufficient enough for use detect different terrains since the biker tend to go slower and pedal slower for uphill or go faster and pedal faster for downhill. With all these information from the sensors, we could definitely find out the optimal gear electronically. We plan to take care of the shifting of rear derailleur, if we have more time we may consider modifying the front as well.

Besides shifting automatically, we plan to add a manual mode to our project as well. With manual mode activated, the rider could override the automatic system and select the gear on its own.

We found out another group did electronic bicycle shifting in Spring 2016, but they didn't have a automatic function and didn't have the sensor set-up like ours. Commercially, both SRAM and SHIMANO have electronic shifting products, but these products integrate the servo motor inside the derailleurs, and they have a price tag over $1000. Only professionals or rich enthusiasts can have a hand on them. As our system could potentially serve as an add-on device to all bicycles with gears, it would be much cheaper.

Project Videos