Project

# Title Team Members TA Documents Sponsor
22 Smart Drone Delivery Improvement
Rahul Joshi
Raymond Hoagland
Sachin Weerasooriya
Luke Wendt appendix0.docx
design_document0.pdf
final_paper0.pdf
other0.pdf
presentation0.pptx
proposal0.pdf
When you order a package that is shipped via ground, it is either left at your door or you must be present to sign off on the package. Services like Amazon PrimeAir look to speed up delivery time with drone shipping, which claims to be able to come to your door in 30 minutes. If you look at Video 2 in this link, you will see that the shipment is loaded and the drone takes off, converts to a plane, flies to the vicinity of the landing local, converts back to a drone, and lands on a marker put out by the recipient. This drone then deposits the package and returns to the factory for its next package. Here lies a major flaw; in the event that something valuable is being shipped, it would be desirable for their to be a confirmation that someone is available to pickup the package that is being delivered.



This is where we step in. The problem we want to address is we will assume that the drone is in the area of the delivery spot. We will use image processing to ID the user specified landing spot. The key difference will be: instead of landing, the drone will notify the owner that the package is ready for pickup and hover above the landing spot for a fixed amount of time. The drone will then wait for a confirmation from the user that it is safe to drop off the package. If this message isn't received after a set amount of time, the drone will return to the warehouse with the package and will try to return the package later. While the drone waits, it will constantly scan the surroundings to see if any unidentified threats are approaching the drone. If it detects a threat is too close, the drone will take off and hover at a higher elevation to protect the package contents. It will stay there until either the recipient gives the okay for delivery or until the time limit is up and the drone will return to the factory.

Hardware needed:
- A drone
- A small camera
- Digital Signal Processor (DSP) Chip
- Proportional-Integral-Derivative (PID) Controller
- Raspberry Pi
- USB wifi dongle
- Smart phone

We will use image processing to ID our landing spot and the PID controller to send the necessary feedback to the motors in order to descend the drone and lookout for potential hazards. For our prototype, will then use the raspberry pi and dongle to connect to the resident's WiFi and send a message to a smartphone app indicating the package has arrived. The drone will then wait for confirmation from the app. The mechanical mechanism to physically lower the package will be out of our scope. Rather we will have an LED or some way to indicate that the package has been dropped.

S.I.P. (Smart Irrigation Project)

Jackson Lenz, James McMahon

S.I.P. (Smart Irrigation Project)

Featured Project

Jackson Lenz

James McMahon

Our project is to be a reliable, robust, and intelligent irrigation controller for use in areas where reliable weather prediction, water supply, and power supply are not found.

Upon completion of the project, our device will be able to determine the moisture level of the soil, the water level in a water tank, and the temperature, humidity, insolation, and barometric pressure of the environment. It will perform some processing on the observed environmental factors to determine if rain can be expected soon, Comparing this knowledge to the dampness of the soil and the amount of water in reserves will either trigger a command to begin irrigation or maintain a command to not irrigate the fields. This device will allow farmers to make much more efficient use of precious water and also avoid dehydrating crops to death.

In developing nations, power is also of concern because it is not as readily available as power here in the United States. For that reason, our device will incorporate several amp-hours of energy storage in the form of rechargeable, maintenance-free, lead acid batteries. These batteries will charge while power is available from the grid and discharge when power is no longer available. This will allow for uninterrupted control of irrigation. When power is available from the grid, our device will be powered by the grid. At other times, the batteries will supply the required power.

The project is titled S.I.P. because it will reduce water wasted and will be very power efficient (by extremely conservative estimates, able to run for 70 hours without input from the grid), thus sipping on both power and water.

We welcome all questions and comments regarding our project in its current form.

Thank you all very much for you time and consideration!