Project

# Title Team Members TA Documents Sponsor
14 Propeller-less Multi-rotor
Bree Peng
Ignacio Aguirre Panadero
Leo Yamamae
Luke Wendt appendix0.pdf
design_document0.pdf
final_paper0.pdf
photo0.jpg
photo0.jpg
presentation0.pptx
proposal0.pdf
video
video
video
video
The idea is to have 4 of these centrifugal fans in each corner replacing the motor+propeller on a typical drone for greater durability and more options. You may ask, "Is this the same as just swapping out methods of propulsion?" The answer is no. In a typical drone, the half of the motors spin clockwise and the other counter-clockwise. This is because of the angular momentum of the motors. A good example is a helicopter. It has its huge propellers and it has a tail-rotor.

The problem that arises from changing to this method of propulsion is that the drone cannot yaw (turn left or right). The traditional drone increases the RPM on two motors spinning the same direction located diagonally from each other and decreases the RPM of the other two. This will result in keeping altitude and turning left or right by angular momentum. The issue with the centrifugal fan propelled drone is that in order to yaw, the direction of the fan must be changed. Therefore, we will need to use an actuator to change the direction.

The ultimate goal is to build a drone that uses a centrifugal fan as a method of propulsion and map the controls such that an experienced multi-rotor flyer will be able to pick up the controller and fly it. So it will be an remote-controlled drone that will be using a typical RC transmitter and receiver or a XBEE talking to a xbox/PlayStation controller.

Therefore, my project will include:
Design of the Flight Control Board
Design of the Chassis,
Design of the Centrifugal Fans,
Actuation design,
Finding parts (ESC if we buy it, Battery, sensors, etc.)

Environmental Sensing for Firefighters

Andri Teneqexhi, Lauren White, Hyun Yi

Environmental Sensing for Firefighters

Featured Project

Hyun Yi, Lauren White, and Andri Teneqexhi earned the Instructor's Award in the Fall of 2013 for their work on the Environmental Sensing for Firefighters.

"Engineering is all about solving real life problems and using the solutions to improve the lives of others. ECE 445 allows you to actually delve deeper into what this really means by providing students the chance to undergo the engineering design process. This requires taking all of the theoretical knowledge, lab experiences, and ultimately, everything that you have ever learned in life, and applying it to your project. Though, there is structure to the course and deadlines in place to measure your team's progress, the actual design, implementation, and success of your project is all determined by you. Unlike any other course that I have taken, I've gained an appreciation for the utilization and benefits of external resources, unforeseen scheduling delays, delegating tasks, and most importantly, teamwork. I consider ECE 445 to be a crash course into real life engineering and a guide to become a successful engineer." -- Lauren White