Project

# Title Team Members TA Documents Sponsor
14 Propeller-less Multi-rotor
Bree Peng
Ignacio Aguirre Panadero
Leo Yamamae
Luke Wendt appendix0.pdf
design_document0.pdf
final_paper0.pdf
photo0.jpg
photo0.jpg
presentation0.pptx
proposal0.pdf
video
video
video
video
The idea is to have 4 of these centrifugal fans in each corner replacing the motor+propeller on a typical drone for greater durability and more options. You may ask, "Is this the same as just swapping out methods of propulsion?" The answer is no. In a typical drone, the half of the motors spin clockwise and the other counter-clockwise. This is because of the angular momentum of the motors. A good example is a helicopter. It has its huge propellers and it has a tail-rotor.

The problem that arises from changing to this method of propulsion is that the drone cannot yaw (turn left or right). The traditional drone increases the RPM on two motors spinning the same direction located diagonally from each other and decreases the RPM of the other two. This will result in keeping altitude and turning left or right by angular momentum. The issue with the centrifugal fan propelled drone is that in order to yaw, the direction of the fan must be changed. Therefore, we will need to use an actuator to change the direction.

The ultimate goal is to build a drone that uses a centrifugal fan as a method of propulsion and map the controls such that an experienced multi-rotor flyer will be able to pick up the controller and fly it. So it will be an remote-controlled drone that will be using a typical RC transmitter and receiver or a XBEE talking to a xbox/PlayStation controller.

Therefore, my project will include:
Design of the Flight Control Board
Design of the Chassis,
Design of the Centrifugal Fans,
Actuation design,
Finding parts (ESC if we buy it, Battery, sensors, etc.)

Interactive Proximity Donor Wall Illumination

Sungmin Jang, Anita Jung, Zheng Liu

Interactive Proximity Donor Wall Illumination

Featured Project

Team Members:

Anita Jung (anitaj2)

Sungmin Jang (sjang27)

Zheng Liu (zliu93)

Link to the idea: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=27710

Problem:

The Donor Wall on the southwest side of first floor in ECEB is to celebrate and appreciate everyone who helped and donated for ECEB.

However, because of poor lighting and color contrast between the copper and the wall behind, donor names are not noticed as much as they should, especially after sunset.

Solution Overview:

Here is the image of the Donor Wall:

http://buildingcampaign.ece.illinois.edu/files/2014/10/touched-up-Donor-wall-by-kurt-bielema.jpg

We are going to design and implement a dynamic and interactive illuminating system for the Donor Wall by installing LEDs on the background. LEDs can be placed behind the names to softly illuminate each name. LEDs can also fill in the transparent gaps in the “circuit board” to allow for interaction and dynamic animation.

And our project’s system would contain 2 basic modes:

Default mode: When there is nobody near the Donor Wall, the names are softly illuminated from the back of each name block.

Moving mode: When sensors detect any stimulation such as a person walking nearby, the LEDs are controlled to animate “current” or “pulses” flowing through the “circuit board” into name boards.

Depending on the progress of our project, we have some additional modes:

Pressing mode: When someone is physically pressing on a name block, detected by pressure sensors, the LEDs are controlled to

animate scattering of outgoing light, just as if a wave or light is emitted from that name block.

Solution Components:

Sensor Subsystem:

IR sensors (PIR modules or IR LEDs with phototransistor) or ultrasonic sensors to detect presence and proximity of people in front of the Donor Wall.

Pressure sensors to detect if someone is pressing on a block.

Lighting Subsystem:

A lot of LEDs is needed to be installed on the PCBs to be our lighting subsystem. These are hidden as much as possible so that people focus on the names instead of the LEDs.

Controlling Subsystem:

The main part of the system is the controlling unit. We plan to use a microprocessor to process the signal from those sensors and send signal to LEDs. And because the system has different modes, switching between them correctly is also important for the project.

Power Subsystem:

AC (Wall outlet; 120V, 60Hz) to DC (acceptable DC voltage and current applicable for our circuit design) power adapter or possible AC-DC converter circuit

Criterion for success:

Whole system should work correctly in each mode and switch between different modes correctly. The names should be highlighted in a comfortable and aesthetically pleasing way. Our project is acceptable for senior design because it contains both hardware and software parts dealing with signal processing, power, control, and circuit design with sensors.

Project Videos