# Title Team Members TA Documents Sponsor
15 Automated Self-cleaning Solar Panel
Area Award: Solar Energy
Terry Green
Yann-Tyng Lin
Yousaf Abdul Salam
Our project is to design an automated solar panel cleaning mechanism that detects obstructions (bird droppings, leaves, etc.) on the panel and automatically cleans them away. Since solar panels are outdoors, they are prone to shading due to natural debris. For large solar installations in remote areas it could become difficult and/or expensive to monitor and clean hundreds of large solar panels. Because of the build-up of dirt on a cell in a solar module, hot spots are created and heat is produced instead of electrical power. This reduces efficiency and life-time of the solar panel. Our project would greatly reduce the amount of service calls for cleaning, resulting in lower operating costs in the long run. The project will be implemented using current and voltage sensing on individual solar cells in an array to provide performance feedback that determines if a cell has become shaded. Cloud shading will be taken in to account by programming and observing whether a whole group of solar cells have become shaded or just isolated cells. We will be adapting the car windshield cleaning mechanism for optimal cleaning (direction, speed, frequency). A soap/water mixture will be sprinkled during the cleaning cycle. Periodic cleaning will be programmed to occur in intervals based on the tradeoff between power consumption and cleaning effectiveness. For example, solar panels located in areas with high bird populations would require more frequent periodic cleaning. Our project will incorporate power electronics, microcontroller programming and control systems for motors.

Cypress Robot Kit

Todd Nguyen, Byung Joo Park, Alvin Wu

Cypress Robot Kit

Featured Project

Cypress is looking to develop a robotic kit with the purpose of interesting the maker community in the PSOC and its potential. We will be developing a shield that will attach to a PSoC board that will interface to our motors and sensors. To make the shield, we will design our own PCB that will mount on the PSoC directly. The end product will be a remote controlled rover-like robot (through bluetooth) with sensors to achieve line following and obstacle avoidance.

The modules that we will implement:

- Motor Control: H-bridge and PWM control

- Bluetooth Control: Serial communication with PSoC BLE Module, and phone application

- Line Following System: IR sensors

- Obstacle Avoidance System: Ultrasonic sensor

Cypress wishes to use as many off-the-shelf products as possible in order to achieve a “kit-able” design for hobbyists. Building the robot will be a plug-and-play experience so that users can focus on exploring the capabilities of the PSoC.

Our robot will offer three modes which can be toggled through the app: a line following mode, an obstacle-avoiding mode, and a manual-control mode. In the manual-control mode, one will be able to control the motors with the app. In autonomous modes, the robot will be controlled based off of the input from the sensors.