# Title Team Members TA Documents Sponsor
15 Automated Self-cleaning Solar Panel
Area Award: Solar Energy
Terry Green
Yann-Tyng Lin
Yousaf Abdul Salam
Our project is to design an automated solar panel cleaning mechanism that detects obstructions (bird droppings, leaves, etc.) on the panel and automatically cleans them away. Since solar panels are outdoors, they are prone to shading due to natural debris. For large solar installations in remote areas it could become difficult and/or expensive to monitor and clean hundreds of large solar panels. Because of the build-up of dirt on a cell in a solar module, hot spots are created and heat is produced instead of electrical power. This reduces efficiency and life-time of the solar panel. Our project would greatly reduce the amount of service calls for cleaning, resulting in lower operating costs in the long run. The project will be implemented using current and voltage sensing on individual solar cells in an array to provide performance feedback that determines if a cell has become shaded. Cloud shading will be taken in to account by programming and observing whether a whole group of solar cells have become shaded or just isolated cells. We will be adapting the car windshield cleaning mechanism for optimal cleaning (direction, speed, frequency). A soap/water mixture will be sprinkled during the cleaning cycle. Periodic cleaning will be programmed to occur in intervals based on the tradeoff between power consumption and cleaning effectiveness. For example, solar panels located in areas with high bird populations would require more frequent periodic cleaning. Our project will incorporate power electronics, microcontroller programming and control systems for motors.

Filtered Back – Projection Optical Demonstration

Tori Fujinami, Xingchen Hong, Jacob Ramsey

Filtered Back – Projection Optical Demonstration

Featured Project

Project Description

Computed Tomography, often referred to as CT or CAT scans, is a modern technology used for medical imaging. While many people know of this technology, not many people understand how it works. The concepts behind CT scans are theoretical and often hard to visualize. Professor Carney has indicated that a small-scale device for demonstrational purposes will help students gain a more concrete understanding of the technical components behind this device. Using light rather than x-rays, we will design and build a simplified CT device for use as an educational tool.

Design Methodology

We will build a device with three components: a light source, a screen, and a stand to hold the object. After placing an object on the stand and starting the scan, the device will record three projections by rotating either the camera and screen or object. Using the three projections in tandem with an algorithm developed with a graduate student, our device will create a 3D reconstruction of the object.


• Motors to rotate camera and screen or object

• Grid of photo sensors built into screen

• Light source

• Power source for each of these components

• Control system for timing between movement, light on, and sensor readings