Project

# Title Team Members TA Documents Sponsor
4 Bluetooth Enabled eWalker
Darren Domingo
Gregory Tow
Lukas Adomaviciute
Akshatkumar Sanatbhai Sanghvi design_document1.pdf
final_paper1.pdf
other1.pdf
other2.pdf
photo1.png
presentation1.pdf
proposal1.pdf
video2.mp4
# Bluetooth Enabled e-Walker

Team Members:
- Lukas Adomaviciute (lukasa3)
- Darren Domingo (ddd3)
- Gregory Tow (gtow2)

# Problem

Walkers are primarily used by people over 65 years old with musculoskeletal or neurological problems. Some conditions that require a person to use a walker include arthritis and Parkinson's disease. When a person uses a walker, one or both hands are occupied supporting themselves with the walker which makes it more difficult for the user to access their smartphone's features. In recent years more devices have become smart devices paired with our smartphones for additional features, but walkers and walking canes have been left behind. When looking for existing solutions, we have found some canes that support lighting and charging, but none with IoT. We believe this would be the next logical step in innovation to support people with conditions that struggle to interface with touch screen displays.

# Solution

We would like to bridge the gap between features that would be used on a smartphone to the walker itself. It would be particularly useful to implement an easily accessible contact system on the walker that could be used in an emergency situation where time is of the essence and the user might struggle to use their smartphone.

# Solution Components
## Walker Construction
- Walker itself
- 3D-printed electronic component housing
- Phone mount

Our solution will be constructed onto a standard folding walker with two forward facing wheels. We plan on constructing a 3D printed housing that will contain the required electronic components. The electronic component housing will attach to the walker below the hand rests and should be positioned in a manner that does not put restraints on the folding machinism or interfere with walking. We also would like to add a physical phone mount to the walker so the smartphone microphone and display can optionally be utilized when the walker’s systems are triggered.

## Communication and Interfacing (IoT)
- 3 contacts - 911, Main (call, text), Backup (call,text)
- Arduino Reader to read in the phone numbers and map those to specific buttons on the walker
- Pressing a button will trigger an automated text or a call through the connected phone through bluetooth
- NFC Readers to store information such as phone numbers or automated texts

Our primary goal for communication and interfacing is to configure a five button system that will allow the user to quickly send text message notifications or preconfigured phone calls through BlueTooth once the device has been paired with their smartphone. One button will be preconfigured for an emergency 911 call. Two buttons can be configured for emergency contact phone calls with phone numbers that can be written by the user. Two buttons can be configured for emergency contact text messages with the contact and message content written by the user. Our group discussed utilizing an NFC reader to store the configured phone contact numbers, text contact numbers, and text message content. The user should be able to utilize an NFC writing app on their smartphone to write the required data to the walker controller. We plan on implementing this system by utilizing an Arduino for BlueTooth communication. We currently plan on utilizing the Arduino RFID module to communicate with the smartphone and read the data written from the user’s smartphone. After the implementation of the button configuration, our group will continue to implement more IoT functionality.

## Sensors

Our Arduino control system will utilize information from our gyroscope sensor to identify when the walker is in a horizontal position or when the walker is on a downwards incline. When the gyroscope indicates the walker in a horizontal position it will utilize the communication and interfacing subsystem to send a text notification that a fall has occurred to the preconfigured button contacts. The control system will also use information from the GPS to text the user’s location to preconfigured contacts in emergency situations.

## Power Management
- Power to Arduino System,
- Integrated USB port for charging internal battery
- Battery Life Indicator

The power management subsystem handles how power is distributed throughout the entire system. We will use an internal rechargeable battery as the main source of power. In order to charge other devices while providing power to the Arduino system, we will make use of a step up DC-DC converter. To turn on the entire system, a power switch will be used in line with the connection to the DC-DC converter, with an appropriate fuse in the positive terminal to prevent damage to the rest of the circuit in the case of a battery issue. To charge the battery, we will use an integrated USB Type C port which connects to the battery. To charge devices, we will use two integrated USB Type A ports connected to the battery which will support quick charging. Lastly, to monitor the charge of the battery, we will make use of LEDs and a LM3914 chip or similar to display the charge status in a color bar approach.

# Criterion For Success
We plan to test if our walker charges properly and if it can be turned on and off. The two charging ports will be tested as well. We will also be ensuring that the walker will be able to make calls and send texts through the push buttons we will have. The text messaging test will also confirm that the GPS is working. Lastly for the gyroscope, we will confirm that it knows the exact orientation our walker is in, and that the text messaging system sends out the proper severity of text.


Source: https://www.diamondgeriatrics.com/newsletters/2008-newsletters/walkers-basics-you-need-to-know/#:~:text=OT%2C%20Reg.,recovering%20from%20a%20debilitating%20illness.

UV Sensor and Alert System - Skin Protection

Liz Boehning, Gavin Chan, Jimmy Huh

UV Sensor and Alert System - Skin Protection

Featured Project

Team Members:

- Elizabeth Boehning (elb5)

- Gavin Chan (gavintc2)

- Jimmy Huh (yeaho2)

# Problem

Too much sun exposure can lead to sunburn and an increased risk of skin cancer. Without active and mindful monitoring, it can be difficult to tell how much sun exposure one is getting and when one needs to seek protection from the sun, such as applying sunscreen or getting into shady areas. This is even more of an issue for those with fair skin, but also can be applicable to prevent skin damage for everyone, specifically for those who spend a lot of time outside for work (construction) or leisure activities (runners, outdoor athletes).

# Solution

Our solution is to create a wristband that tracks UV exposure and alerts the user to reapply sunscreen or seek shade to prevent skin damage. By creating a device that tracks intensity and exposure to harmful UV light from the sun, the user can limit their time in the sun (especially during periods of increased UV exposure) and apply sunscreen or seek shade when necessary, without the need of manually tracking how long the user is exposed to sunlight. By doing so, the short-term risk of sunburn and long-term risk of skin cancer is decreased.

The sensors/wristbands that we have seen only provide feedback in the sense of color changing once a certain exposure limit has been reached. For our device, we would like to also input user feedback to actively alert the user repeatedly to ensure safe extended sun exposure.

# Solution Components

## Subsystem 1 - Sensor Interface

This subsystem contains the UV sensors. There are two types of UV wavelengths that are damaging to human skin and reach the surface of Earth: UV-A and UV-B. Therefore, this subsystem will contain two sensors to measure each of those wavelengths and output a voltage for the MCU subsystem to interpret as energy intensity. The following sensors will be used:

- GUVA-T21GH - https://www.digikey.com/en/products/detail/genicom-co-ltd/GUVA-T21GH/10474931

- GUVB-T21GH - https://www.digikey.com/en/products/detail/genicom-co-ltd/GUVB-T21GH/10474933

## Subsystem 2 - MCU

This subsystem will include a microcontroller for controlling the device. It will take input from the sensor interface, interpret the input as energy intensity, and track how long the sensor is exposed to UV. When applicable, the MCU will output signals to the User Interface subsystem to notify the user to take action for sun exposure and will input signals from the User Interface subsystem if the user has put on sunscreen.

## Subsystem 3 - Power

This subsystem will provide power to the system through a rechargeable, lithium-ion battery, and a switching boost converter for the rest of the system. This section will require some consultation to ensure the best choice is made for our device.

## Subsystem 4 - User Interface

This subsystem will provide feedback to the user and accept feedback from the user. Once the user has been exposed to significant UV light, this subsystem will use a vibration motor to vibrate and notify the user to put on more sunscreen or get into the shade. Once they have done so, they can press a button to notify the system that they have put on more sunscreen, which will be sent as an output to the MCU subsystem.

We are looking into using one of the following vibration motors:

- TEK002 - https://www.digikey.com/en/products/detail/sparkfun-electronics/DEV-11008/5768371

- DEV-11008 - https://www.digikey.com/en/products/detail/pimoroni-ltd/TEK002/7933302

# Criterion For Success

- Last at least 16 hours on battery power

- Accurately measures amount of time and intensity of harmful UV light

- Notifies user of sustained UV exposure (vibration motor) and resets exposure timer if more sunscreen is applied (button is pressed)