Circuit Protection, Tips, and Debug

ECE 445

Becoming a Good Design Engineer

- Break complex circuits down into manageable blocks
 - With accessible I/O for probing!
- Troubleshoot problems at a modular level
- Understand previous approaches to the problem

- End goal of senior design:
 - Solve new problems in innovative ways
 - Learn about the process of creating electronics

Data Sheets - ICs

- Pin-outs
- I/O pin ratings
 - Vih/Vil, Voh/Vol, Iout as appropriate
 - Part likely **breaks** if these are violated
- Potential applications (example circuits!)
- Power requirements
 - All the VDD rails needed for operation
- Timing diagrams for digital ports

Figure 13. SPI Control Port Timing

[1] Cirrus Logic, "24-Bit 192-kHz Stereo Audio CODEC", CS4270 datasheet, [Revised Aug 2

Device Ratings – Discrete Components

Resistors

- Power rating
- Tolerance

Capacitors

- DC derating V at which the C is "spec'd" (...but not really...)
- Tolerance
- Z vs. frequency
- ESR

Inductors

- Rated vs. saturation current
- Self-resonant frequency
- Tolerance
- DCR

Diodes

- V (reverse standoff vs. breakdown vs clamping)
- leakage current

Wire Gauges

- Wire gauge is a standard for the size of the wire (proportional to current rating)
- Typical wire in lab is 22 AWG Cu
- Maximum for breadboard
- 52.9 m Ω /meter
- 7 A for short wiring in air
- 0.92 A for power transmission
- Other common gauges:
 - 16 AWG: 3.7 A
 - 18 AWG: 2.3 A
 - 20 AWG: 1.5 A
 - 24 AWG: 0.58 A
 - 26 AWG: 0.36 A
 - 28 AWG: 0.23 A

Resistor Codes

Reading Surface Mount Resistors

- 332 is 3.3 kiloohms
- 3K3 is 3.3 kiloohms

Use reference tables for resistors and wire gauges!

Potentiometers

- Variable Resistors
- Example:

Trimpot, $R = 10 \text{ k}\Omega$

(a) to (c): $R_1 = 6 k\Omega$

(b) to (c): $R_2 = 4 k\Omega$

Device Polarity

The longer length is the (+) terminal

Capacitors

No polarity: ceramic or polyester

Tantalum: marked on + terminal

Diodes

The bar indicates cathode

Earth Ground vs "Ground"

- Green Terminal = Earth Ground
- Black Terminals = Signal Grounds

Voltage Current Limiting

- Fuses
 - Typically allow for passage of "normal" current
 - A fuse will "blow" above its current rating

- Diodes
 - Conduct when V > 0.7 V
- Best solution: use both diodes and fuses

Reverse Polarity Protection

2 different configurations to ensure correct voltage polarity:

Simple Diode

Circuit will not operate with incorrect polarity

Diode Bridge

- Circuit will operate under either polarity
- Higher losses

Driving High Current Load

- Most microprocessor/TTL can drive <20mA (approximately an LED)
 - Interface microprocessor I/O with a gate.
 - Let the gate break instead of the microprocessor!
- Methods
 - Relays
 - Simple but may wear out and have delays
 - Transistor
 - Fast switching but have current limit
 - H-bridge
 - More involved but allows for forward and reverse current
 - Good for motors

Power Supply Bypass/Decoupling Capacitors

- Protect voltage rail from noisy ICs/circuits
- Provide instantaneous current for fast-transitioning (digital) signals
- Best to use a few caps in parallel:
 - ...smaller C to work at higher frequencies
 - ...large or "bulk" C to provide large amounts of energy
- Almost all ICs (microprocessors, DSPs, etc) need some decaps for every voltage rail: place as close as possible to their VDD pins

Troubleshooting Steps (1/2)

- 1. PCBs: Remove/disconnect power and measure DC resistance at power supply rails (VDD-to-GND) with a multimeter.
 - If reading is less than ~ 50 to 100Ω , you may have a damaged part connected to that rail somewhere— DON'T power on
 - If possible, try removing parts 1 by 1 to see if the reading increases
- 2. Power on. Check supply voltages with a multimeter.
 - If any rails show 0V: is power actually plugged in? Is any switch off? Is the fuse blown?
- 3. Probe signal at intermediate stages or at individual function blocks I/O.

Equipment available:

- Digital Signals: Oscilloscope, Logic Analyzer
- Analog Signals: Oscilloscope, Voltmeter, Spectrum Analyzer

Troubleshooting Steps (2/2)

4. Check interconnections

- Signals incorrectly wired?
- Are any wires loose/contacts bad?
- Is any signal floating (tied to nothing)?

5. Double check the design

- Check the pin diagram
- Check that you have the correct datasheet for the part number
- Re-analyze the logic, go through some calculation
- Ensure correct polarity

6. Faulty devices/breadboard (Last resort if all else fails!)

- Replace/rewire one part at a time, test after every change
- Isolate the parts under test from the rest of the circuit

References

- http://www.intersil.com/data/an/an1325.pdf
- http://en.wikipedia.org/wiki/Diode
- http://en.wikipedia.org/wiki/Fuse_(electrical)
- https://en.wikiversity.org/wiki/Tantalum_capacitors
- http://www.learnabout-electronics.org/resistors_07.php
- http://www.rbeelectronics.com/wtable.htm
- Previous ECE 445 Lecture Slides
- Staff of the ECE Electronics Shop,
 Dan Mast, Mark Smart, Skot Wiedmann