Appendix A Requirement and Verification Table

1. Control Module

1.1 Microcontroller

Requirement	Verification	Points
1. When in non-auto mode, the	1. Use button to adjust window level	15
microcontroller should be able to	from 0 to 3, and back from 3 to 0.	
adjust the window to different levels	Use timer to measure the response	
using UP and DOWN button. The	time.	
response time should be less than 2	2. Find a city not in bad weather	
second.	condition. And enter the city and	
2. When in auto mode, and the user	desired level of 1 to the webpage,	
enter a city that is not in bad	see that the window level will be	
weather condition, the	adjusted to 1. And enter desired	
microcontroller can get the desired	level of 0 to the webpage, see that	
level and adjust the window level to	the window level will be adjusted to	
the desired one. The response time	0. Use timer to measure the	
should be less than 30 seconds.	response time.	
3. In auto mode, when user enters a	3. Enter desired level of 4 to the	
desired level of 4 (which means	webpage. Enter the desired	
don't care), the microcontroller	temperature equals to the outside	
should open the window to the level	temperature, see that the	
which in long term can drive the	microcontroller will adjust the	
room temperature towards the	window to level 3. Change the	
desired one. Meanwhile, we should	desired temperature to somewhere	
see that the right dot on seven	between the inside room	
segment display denoting the Air	temperature and the outside	
Conditioner will be on if and only if	temperature. See that the	
the window is closed and the room	microcontroller will adjust the	
temperature doesn't equal to the	window to level 1 or 2. Change the	
desired one. The response time	desired temperature to room	
should be less than 30 seconds.	temperature. See that the	
4. If the outside weather condition is	microcontroller will adjust the	
bad (rainstorm, tornado, etc.), the	window to level 0. Check if the right	
window will be closed.	dot on seven segment display is on	
	in appropriate situations. Use timer	
	to measure the response time.	
	4. Enter a city that is in bad weather	
	condition, and set the desired level	
	to non-zero, see that the window	
	will not be opened. If we set the	
	desired temperature equal to the	
	outside temperature, the window	
	still cannot be opened.	

1.2 Other Components

Requirement	Verification	Points
 Temperature Sensor (LM35) (a) The program should calculate the correct temperature based on the voltage output from the temperature sensor. The value should be within an accuracy of 95%. 	 Temperature Sensor (LM35) (a) Compare the calculated temperature with the real temperature read from the room air conditioner. 	2
 2. Seven Segment Display (ACDA03-41CGKWA-F01) (a) Temperature displayed on the LED must be of the same value as the one read from the temperature sensor and generated by the program. (b) Each segment should be in series with resistor of appropriate resistance to have moderate luminosity. 	 2. Seven Segment Display (ACDA03-41CGKWA-F01) (a) Write code to read current temperature from the temperature sensor and print it to monitor. Compare the value with the displayed number. (b) Measure the voltage across each segment. The voltage should be around 2.2V 	5
 3. Switch (a) Should have a pull-up voltage; outputs high when released and low when pressed (b) The program flags, e.g. Auto, Up and Down, should be set to its opposite Boolean value once the according switch is pressed. 	 3. Switch (a) Use program to print digital reading of the pin which connects to the switch. The output should be 1 when button is released and 0 when pressed. (b) Print flag value before and after the switch is pressed. It should change from TRUE to FALSE or from FALSE to TRUE. 	3
 4. I²C-compatible Analog-to-Digital Converter (ADS1115) (a) With Adafruit_ADS1115 library, the program can read pin A0-A3 values. (b) The chip can communicate with microcontroller through SDA and SCL successfully. 	 4. I²C-compatible Analog-to-Digital Converter (ADS1115) (a) Connect a working temperature sensor to each pin. Warm or cool down the sensor. The program should output increasing or decreasing value. (b) Same as (a). 	3
 5. I/O Expander (PCA9535) (a) The program should set all the 16 bit pins as output. Each bit should output low to turn on LED, and high to turn off LED. (b) The program should have a digit mapping from each output pin to 	 5. I/O Expander (PCA9535) (a) Write a blinking program to alternate each bit output between high and low. The 7-segment display LED driven by this chip should blink. 	5

each segment in the 7-segment	(b) Input the program with values	
display such that it should show	from 0 to 99 and the dots and	
the integer value input from the	check if the 7-segment display	
program.	displays the corresponding	
	values.	

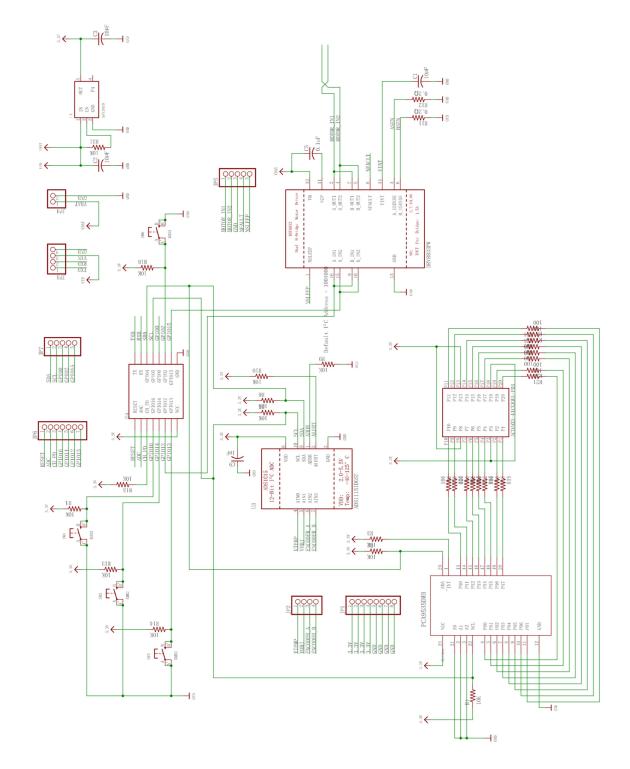
2. Web Module

2.1 Web Server

		D • •
Requirement	Verification	Points
 The web server should be able to read following information: city that user lives in, the desired temperature and desired window level. The back end should fetch correct weather information based on the city. Such information should be available in 1 minute: the desired window level, the desired room temperature, whether it is in bad weather condition outside, and the outside temperature. The web server should be able to communicate with the microcontroller through TCP and HTTP. The Web server should be able to handle http request and send back correct information on: the desired window level, the desired room temperature, whether it is in bad weather condition outside, and the outside temperature. The web server should be able to show connection condition. The "connection established" should be updated within 30 seconds, and the "connection lost" should be updated in 3 minutes. 	 Manually enter different values and click on buttons. Use curl command to check if the fetched content is the same as the true weather conditions. Use application called "postman" to send http request, check the reply message is correct. First, check that the web page shows "connection not viable". Use application called "postman" to send http request. Check that the web page shows "connection is viable". Wait for 3 minutes, and see if the web page shows "connection not viable" again. 	10

3. Window Module

3.1 Infrared Sensor


Requirement	Verification	Points
1. Window stops moving when object is detected, regardless of the way microcontroller was trying to move the window.	1. Simulate situations such that microcontroller will move the window. While the window is moving, place any object between the upper part and bottom part of the window and see if the window stops.	2

3.2 Dual H-Bridge Motor Driver

Requirement	Verification	Points
1. The motor driver can communicate	1. Use a small motor for simplicity.	5
with the microcontroller	Analog Write to each motor pin, the	
successfully.	pin should output some significant	
	voltage.	
2. The motor driver should drive	2. Use a small motor for simplicity.	
motor in two directions, clockwise	Analog Write to motor pin A with	
and anti-clockwise.	significant value, and the other pin B	
	with 0 value. The motor should	
	rotate clockwise, and vice versa.	
3. The motor should be driven in	3. Given the full speed (1024) we use	
relatively safe and fast speed. The	Analog Write, the motor should	
window should be adjusted by one	adjust the window to a level up or	
level up/down in 10 seconds.	down in 10 seconds.	

Appendix B

PCB Schematic

