Automated Bartender Presentation

Team #61 TA: Sam Sagan Maxwell Dribinsky Austin Gram Gregory Wajda

Project Introduction

- Emphasis on preventing sexual assault in social bar setting
- Microprocessor controlled bartender
- Requests made through mobile application
- Beverage is securely prepared according to custom order

Objective

Enhance and secure the traditional bar setting

Requirements:

→ Secure

Authentication in every transaction

→ Efficient

Order now, pay now, enjoy now

→ User-friendly

Provide a simple interface for the machine

Block Diagram

User-friendliness: Mobile application

Our mobile application allows users to order their drinks from any location within wifi range. It provides a simple interface and a facebook login for convenience.

User-friendliness: Mobile application

- Supports Marshmallow and Lollipop Android OS
 - 63.2% of platforms

https://en.wikipedia.org/wiki/Android_version_history

User Interface

- Login Screen
 - Used to verify user before ordering
 - Can be used for payment, verify 21 years of age, etc.

୮&T 🔀 ହି 🕯 📶 48% 🛢 6:18 PM		le 🔰 🖄 🖄 🗟 6:18 PM	
AutoBartender	:	AutoBartender	
Set Drink Ratio and Send Order Continue with Facebook Please Sign in		Set Drink Ratio a	and Send Order out ed in
Testing		Testing	
• • • • • • •	• • • • •	••••••)_•_•
50%	50%	50%	50%
Drink1	Drink2	D Logged in as: Greg Wajda	
IP Address		CAN	ICEL LOG OUT
Port		Port	_
	PDED	CEND 6	
SEND ORDER		SEND	

User Interface

- Use slider for desired drink ratio
 - Can be anywhere from 0%:100% to 100%:0%
- Send order!
 - Sends 6 Bytes of drink info to user

AT&T	🗙 🖄 🗟 📶 48% 🛢 6:18 PM		🗙 🛱 🕈 📶 48% 🛢 6:18 PM
AutoBartender	:	AutoBartender	:
Set Drink Ratio	and Send Order g out ged in	Set Drink Rat	tio and Send Order .og out ggged in
20% Drink1	80% Drink2	70% Drink1	30% Drink2
IP Address Port		P Address Port	
SEND	ORDER	SEN	ID ORDER

User Interface

- Scan barcode to open lock
 - Receives 10 Bytes of barcode data, then creates it on screen

CANCEL ORDER

Interaction with other modules

- Sends drink orders over WiFi
 - 6B packet describing what drink ratio a user desires
- Drink order determines duration of pumps
 - RATIO * FIXED_TIME_INTERVAL = POUR_DURATION
- Receives randomly generated barcode
 - 10 Bytes of alphanumeric characters
 - Provides 36¹⁰ possible codes

Power

- 12V 5A Power Supply
 - Powers 2 Air Pumps, Electromagnetic Lock, Motor
- 12V to 5V Voltage Regulator
 - Handles up to 1A
 - Powers ATmega328, Motor Driver, Scanner, Wifi Module, Sensor, Circuit

Power

- 12V power source measured at 13.6V

- P = IV

Part	Rated Values	Final Measured Values
Air Pumps (x2)	0.3A * 12V * 2 = 7.2W	0.08A * 13.6V * 2 = 2.176 W
Electromagnetic Lock	0.1A * 12V = 1.2W	0.11A * 13.6V = 1.496W
Motor	0.33A * 12V = 3.96W	1A * 13.6V = 13.6W
5V Parts	1A * 5V = 5W	1A * 5V = 5W
Total	17.36 W	22.272 W
	17.36 W = 12V * 1.44A	22.272 W = 13.6V * 1.638A

Security & Efficiency: Control

We reach our high-level requirements of Security and Efficiency by using the ATmega328 to control various modules within our project.

Microprocessor

- ATmega328p with flashed Arduino bootloader
- Direct interface with WiFi module
- Programmable through Arduino

Barcode Scanner

- Communicates over PS/2 protocol
- Scans 10 character Code128 barcodes
- Controlled from ATmega328

Door Circuit

- Used to determine whether door is open or closed
- Conductive lock allowed straightforward mechanical assembly

Infrared Sensor

- Powered with 5V line
- Outputs 0V to ATmega when cup detected
- Outputs 5V to ATmega when cup not detected
- Marks the pouring station in front of the door

Security & Efficiency: Electromechanical System

We achieve our high-level requirements of Security and Efficiency by using the lock, motor, and air pumps to securely make a drink

Electro-Mechanical

Transistor Circuit

- Used to control our pumps and electromagnetic lock

Electromagnetic Lock

- Turns on with 12V differential applied to both terminals.
- Controlled with transistor circuit from ATmega328
- 100lbs of holding force

Pouring System

- Air pumps turn on with 12V differential applied to both terminals.
- Controlled with transistor circuit from ATmega328
- Our goal was to pour a drink in 30 secs

Pouring duration

Ratio chosen (drink arbitrary)

Motor

- Bipolar Stepper Motor
- A3967 Microstepping Driver with Translator
 - Converts PWM signal from ATmega328 into signals for each of the motor's 4 wires.
 - Controls max current allowed to motor
- Current calculated using reference voltage (Vref) and sense resistor (Rs)
- I = Vref / 8*Rs

Conclusions

What we would do differently:

- Use more powerful motor
- Use more accurate power supply

Future work:

- Add more pouring stations
- Larger door or new system for multi-drink orders

