Automated Bartender

 PresentationTeam \#61
TA: Sam Sagan
Maxwell Dribinsky
Austin Gram
Gregory Wajda

Project Introduction

- Emphasis on preventing sexual assault in social bar setting
- Microprocessor controlled bartender
- Requests made through mobile application
- Beverage is securely prepared according to custom order

Objective

Enhance and secure the traditional bar setting
Requirements:
\rightarrow Secure
Authentication in every transaction
\rightarrow Efficient
Order now, pay now, enjoy now
\rightarrow User-friendly
Provide a simple interface for the machine

Block Diagram

$\bar{\Longrightarrow}$ Optical Signal

4 \cdots

Wifi Signal

Digital Signal
12V Power Line

User-friendliness:

Mobile application

Our mobile application allows users to order their drinks from any location within wifi range. It provides a simple interface and a facebook login for convenience.

User-friendliness:
 Mobile application

- Supports Marshmallow and Lollipop Android OS
- 63.2% of platforms

- Gingerbread 0.9\%
- Ice Cream Sandwich 0.9\%
- Jelly Bean 10.1\%
- KitKat
20.0\%
- Lollipop 32.0\%
- Marshmallow 31.2\%
- Nougat 4.9\%
https://en.wikipedia.org/wiki/Android_version_history

User Interface

- Login Screen
- Used to verify user before ordering
- Can be used for payment, verify 21 years of age, etc.

User Interface

- Use slider for desired drink ratio
- Can be anywhere from 0\%:100\% to 100\%:0\%
- Send order!
- Sends 6 Bytes of drink info to user

User Interface

- Scan barcode to open lock
- Receives 10 Bytes of barcode data, then creates it on screen

Interaction with other modules

- Sends drink orders over WiFi
- 6B packet describing what drink ratio a user desires
- Drink order determines duration of pumps
- RATIO*FIXED_TIME_INTERVAL = POUR_DURATION
- Receives randomly generated barcode
- 10 Bytes of alphanumeric characters
- Provides $36{ }^{10}$ possible codes

Power

- 12V 5A Power Supply
- Powers 2 Air Pumps, Electromagnetic Lock, Motor
- 12 V to 5 V Voltage Regulator
- Handles up to 1A
- Powers ATmega328, Motor Driver, Scanner, Wifi Module, Sensor, Circuit

Power

- 12V power source measured at 13.6 V
- $P=I V$

Part	Rated Values	Final Measured Values
Air Pumps (x2)	$0.3 \mathrm{~A} * 12 \mathrm{~V} * 2=7.2 \mathrm{~W}$	$0.08 \mathrm{~A} * 13.6 \mathrm{~V} * 2=2.176 \mathrm{~W}$
Electromagnetic Lock	$0.1 \mathrm{~A} * 12 \mathrm{~V}=1.2 \mathrm{~W}$	$0.11 \mathrm{~A} * 13.6 \mathrm{~V}=1.496 \mathrm{~W}$
Motor	$0.33 \mathrm{~A} * 12 \mathrm{~V}=3.96 \mathrm{~W}$	$1 \mathrm{~A} * 13.6 \mathrm{~V}=13.6 \mathrm{~W}$
5 V Parts	$1 \mathrm{~A} * 5 \mathrm{~V}=5 \mathrm{~W}$	$1 \mathrm{~A} * 5 \mathrm{~V}=5 \mathrm{~W}$
Total	17.36 W	22.272 W
	$17.36 \mathrm{~W}=12 \mathrm{~V} * 1.44 \mathrm{~A}$	$22.272 \mathrm{~W}=13.6 \mathrm{~V} * 1.638 \mathrm{~A}$

Security \& Efficiency:

 ControlWe reach our high-level requirements of Security and Efficiency by using the ATmega328 to control various modules within our project.

Microprocessor

- ATmega328p with flashed

Arduino bootloader

- Direct interface with WiFi module
- Programmable through Arduino

Barcode Scanner

- Communicates over PS/2 protocol
- Scans 10 character Code128 barcodes
- Controlled from ATmega328

Door Circuit

- Used to determine whether door is open or closed
- Conductive lock allowed straightforward mechanical assembly

Infrared Sensor

- Powered with 5V line
- Outputs OV to ATmega when cup detected
- Outputs 5V to ATmega when cup not detected
- Marks the pouring station in front of the door

Security \& Efficiency:

 Electromechanical
System

We achieve our high-level requirements of Security and Efficiency by using the lock, motor, and air pumps to securely make a drink

Electro-Mechanical

Transistor Circuit

- Used to control our pumps and electromagnetic lock

Electromagnetic Lock

- Turns on with 12 V differential applied to both terminals.
- Controlled with transistor circuit from ATmega328
- 100lbs of holding force

Pouring System

- Air pumps turn on with 12 V differential applied to both terminals.
- Controlled with transistor circuit from ATmega328
- Our goal was to pour a drink in 30 secs

Motor

- Bipolar Stepper Motor
- A3967 - Microstepping Driver with Translator
- Converts PWM signal from ATmega328 into signals for each of the motor's 4 wires.
- Controls max current allowed to motor
- Current calculated using reference voltage (Vref) and sense resistor (Rs)
- | = Vref / 8*Rs

Conclusions

What we would do differently:

- Use more powerful motor
- Use more accurate power supply

Future work:

- Add more pouring stations
- Larger door or new system for multi-drink orders

Questions?

