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Abstract 

In the United States alone, millions of livestock die each year from preventable illness.[1] Current means 

for diagnosing sick animals are largely manual focusing on visible signs of illness like runny noses, 

clouded eyes, and loss of appetite.[2] We aim to greatly reduce livestock loss by creating an inexpensive 

device which will constantly monitor livestock temperatures and alert farmers of animals with fevers, 

which not only are more accurate indicators of illness, but also occur days before other symptoms. Our 

device resides within a normal livestock ear tag and features electronics to measure temperature. It 

periodically broadcasts the temperature data over the 915MHz Industrial, Scientific, and Medical (ISM) 

band to a receiver which will provide a user friendly interface for the herd’s temperatures and which 

animals are running fevers. We initially intend to target domestic beef cattle as they are the animal for 

which loss is most costly to farmers. Our device will save farmers money by reducing animal loss, 

providing farmers with data they need for granular application of antibiotics, keeping more animals 

certified organic, and reducing veterinary costs. The long-term implication is that the cost to raise 

livestock will decrease lowering meat prices worldwide. 
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1 Introduction 

1.1 Objective and Background 
Current methods of diagnosing sick animals are insufficient. The process is largely manual. We plan to 

change that by offering a solution to wirelessly monitor the core temperature of cattle. 

According to the Wall Street Journal, “To monitor cattle health, feedlots typically rely on cowboys to ride 

through pens, watching for lethargic animals that are having trouble breathing.”[2] Because the process 

is labor intensive and the symptoms identifiable show up days after the onset of disease, the livestock 

industry suffers from a great deal of both false positive and false negative sickness. This results in a great 

deal of animal death, over medication of animals, unnecessary vet visits, and unnecessary loss of organic 

certification. This problem costs the cattle industry over 2 billion dollars in losses annually. As of 2016, 

there are about 92.0 million heads of cattle in the United States.[4] Of these cows, digestive and 

respiratory illness, mastitis, and other diseases kill approximately 1.5 million of them each year.[4] 

We aim to fix these problems by creating a cow tag that will constantly measure the temperature of the 

animal and send it back to a receiver via RF 915MHz, known as the Industrial, Scientific, and Medical 

(ISM) band. We chose this band because it is unregulated in the United States and offers the best 

transmission range and bandwidth of the unregulated RF bands. The receiver would upload data via the 

internet and a graphical user interface (GUI) would alert the farmer of animals that are running fevers. 

This solution leads to less labor intensive, more accurate, and earlier diagnosis of sick animals. Because 

of the amount of money farmers lose to this problem, a working solution would be easily marketable -- 

buying our product would literally save them money.  

1.2 High Level Requirements 
 

● Units must be durable enough and have a battery life long enough for the unit to last the entire 

lifespan of a beef cow (minimum 18 months). 

● Units must transmit temperatures successfully every hour with a resolution of at least 0.2 

degrees Celsius in order to detect a cow’s fever within 12 hours. 

● Units must have a bulk cost of less than $10. 
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1.3 Block Diagram 

1.3.1 Tag Block Diagram 

 
Figure 1.1: Block Diagram for Tag 

As illustrated in Figure 1.1, the Tag unit has four main modules: the power module, the control module, 

the sensor module, and the transmission module. The main component of the power module is the 

battery. It is used to provide power to the control module which in turn provides control signals and 

power to the rest of the blocks. The control block is composed of a Texas Instruments (TI) CC1310 

microcontroller. The control signals are enabled or disabled by software. The sensor module is a 

thermistor in a simple voltage divider circuit with a resistor. It is used to generate an analog signal for 

the temperature around the probe. The transmission unit is composed of an antenna and an impedance 

balancing network to convert the imaginary impedance output of the control unit into the impedance 

expected by the antenna.  

1.3.2 Receiver Block Diagram 

 

 
Figure 1.2: Block Diagram of Receiver 
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Our receiver unit is composed of five modules. As seen in Figure 1.2, RF packets are absorbed in the 

antenna and carried to the receiver. We chose the RFM69 transceiver unit, but to save development 

costs, ended up using the Texas Instruments CC1310 “Launchpad” Development Board instead since we 

already had the part for testing the tag unit. The receiver communicates with a Raspberry Pi 3B over 

serial interface. The Raspberry Pi in turn uploads the data to an Amazon Web Services (AWS) Database.  

1.3.3 Physical Specifications 

 

Figure 1.3: Physical CAD Drawing of Cow Tag 

Figure 1.3 illustrates the physical dimensions of a cow tag thermometer. The tag must be a total of 5 

inches (127mm) tall, 3 inches (76.2mm) wide, and 10mm deep. The thermistor protrudes out of the 

plastic housing 6 inches in order to reach the ear canal of the cow. The 10 mm depth is to have enough 

room for approximately 2.5mm of electronics plus enough cushioning to protect the electronics. The 

hole at the top of the tag is for the piercing that the cow receives. The piercer keeps the tag connected 

to the cow’s ear.  
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2 Design 

2.1 Design Procedure 

2.1.1 Sensor Block 

We knew that the basic sensor we were going to use would be a resistor in series with a thermistor so 
that the voltage divider output would be calculable later. We considered using a thermocouple for the 
temperature sensor for the added resolution and lower power usage, but we decided to stick with a 
thermistor because the power usage met the requirement, it was cheaper, it was more linear in our 
temperature range and it was easier to get readings from. 

We found an equation online for the resistance of a thermistor based on temperature, we will use this 

equation later to determine which exact thermistor and resistor we will use in series for the sensor unit. 

𝑅 = 𝑅𝑜𝑒−𝐵/𝑇𝑜𝑒𝐵/𝑇                                                               (1) 

2.1.2 Control Block 

Our first idea for controlling the circuit logic was to use transistor-transistor logic (TTL) logic gates 
because we were familiar with them, but this did not turn out to be the best option for our design due 
to high complexity and power usage that did not meet the specification. The option for our design that 
we chose was to use a low power microcontroller. After evaluating many microcontrollers, we chose the 
Texas Instruments CC1310. We chose this microcontroller because of its ability to transmit at 915Mhz, 
low standby power usage, package size and low cost.  

2.1.3 Power Block 

In our design, the power module must provide 3V of power, have a large enough capacity to last 18 
months, and have a small enough form factor to fit in a cow ear tag. We decided to use a coin cell 
battery, the CR2025, because it meets both requirements. We did some conservative power calculations 
that gave us the minimum power we needed from the battery and chose a battery with an order of 
magnitude more amp hours than the minimum. We could have used solar power to power our device, 
but we decided that it was too expensive for our high-level requirement and the ear tags are usually too 
dirty and disposable for solar power usage. 

2.1.4 Transmitter Block 

The transmission block is responsible for preparing the message for sending and then sending the 
message. For our design the CC1310 chip reads the voltage data from the voltage division on the sensor 
and calculates a temperature from the reading. It then packages the 2-byte temperature with a 4-byte 
preamble (used to synchronize the transmitter and receiver), 2-byte magic number, 2-byte unique ID 
and 2-byte cyclic redundancy check (CRC). 

We then broadcast that message on 915Mhz via our trace antenna. Preceding the trace antenna lie our 
components to match the impedance of the antenna to the impedance of the chip. This is necessary 
because it will keep the messages from rebounding back and forth between the antenna and the chip 
and this will minimize noise and maximize power. 
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2.1.5 Receiver Block 

The receiver unit is responsible for collecting data from all the various ear tag transmitters and 
processing them to be present to the customer. It includes an antenna attached to a RF Receiver chip to 
receive signals, a Raspberry Pi 3 to process and store the data, and a surge protector connected to a 
conventional outlet for power. 

2.2 Design Details 

2.2.1 Sensor Block 

We picked a thermistor at random to test its tolerance. The properties of the thermistor is shown below. 

Table 2.1: Important Specifications of the Thermistor [5] 

25 C Resistance 47 kΩ 

25 C B Value 4050 K 

Tolerance 1% 

Operating Temperature Range -40 C to +125 C 

Using these numbers and equation (1) we can calculate the resistance range of the thermistor over 38.6 

to 40 C, the average temperatures of a healthy and sick cow respectively. 

𝑅𝑚𝑖𝑛 = 47000𝛺 𝑥 𝑒−4050𝐾/298.15𝐾𝑒4050𝐾/313𝐾 = 24672𝛺               

(2) 

𝑅𝑚𝑎𝑥 = 47000𝛺 𝑥 𝑒−4050𝐾/298.15𝐾𝑒4050𝐾/311.6𝐾 = 26149 𝛺                 

(3) 

We averaged these two values to determine that the resistance of the resistor should be 25.5 kΩ for the 

47 kΩ thermistor. With these two resistors determines, we can now model the behavior of the voltage 

divider output with respect to temperature. 

 

Our voltage divider circuit is shown below: 

 
Figure 2.1: Sensor Block Schematic 

 

And rearranging equation (1) and using the voltage divider formula we get: 
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𝑉𝑜𝑢𝑡 =
𝑅

𝑅+25500
                          (4) 

𝑇 =
𝐵

𝑙𝑛(𝑅/𝑅𝑜)−𝐵/𝑇𝑜
                   (5) 

 

Using these two formulas we can then model the output of the voltage divider as shown in Figure 2.2 

below. We can see that for the temperature range of 38.6 to 40 C, the voltage divider output will be 

around 1.475 and 1.52 V.  

 

Figure 2.2: Voltage Output vs Thermistor Temperature 

2.2.2 Control Block 

The control logic keeps track of time so that it knows when to power up the other components, and also 

controls how long the power and data is being sent to the other components. We also have a 2 byte 

identifier value stored in the microchip upon programming for signal identification as well as another 2 

byte identifier value for livestock identification. That value along with a 4-byte preamble, 2 byte 

temperature and a 2 byte CRC is transmitted to the receiver (so the entire packet is a total of 12 bytes). 

The control block itself is built into a TI CC1310[6] chip, which is a microcontroller that features a built-in 

ISM band RF transceiver and 12-bit analog to digital converter (ADC). The control block gets 3V of power 

from the battery. 

The RTC is also built into the CC1310 chip and allows scheduling of configurable periodic interrupts that 

are used to schedule reading from the sensor block and transmitting the data. The RTC is kept to a 32.8 

kHz clock cycle which means that it needs to count to 32800 * 60 seconds / minute * 5 = 9840000 in 

order to keep track of the 5 minute intervals between data transmission. 

The analog to digital converter is also built into the CC1310 and receives the voltage output from the 

sensor module and reads it into the microcontroller. The CC1310 ADC is 12 bits, and taking into 

consideration the Vcc of 3V, leaves an error range of +/- 366uV. 
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2.2.3 Power Block 

The calculations for how much power is needed to power the transmitter unit for two years is as 

follows: 

Important Microcontroller Specifications[6]: 

● TX at +10 dBm 868 MHz: 13.4 mA  

● Standby: 0.7 µA (RTC Running and RAM and CPU Retention)  

Message is 12 bytes. 

Send message every (s) seconds (s) = sec/msg 

Standby in between messages 

Wake up time is 174 us 

Conservatively we are assuming a 1 ms wake up and set up time. 

 

Standby power: 

Conservatively it's constantly using standby power. 

. 7µ𝐴 ∗ 2 𝑦𝑒𝑎𝑟𝑠 ∗ 365 𝑑𝑎𝑦𝑠 ∗  24 ℎ𝑜𝑢𝑟𝑠 =  𝑃𝑠𝑡𝑎𝑛𝑑𝑏𝑦  =  .0123𝐴ℎ                            

(6) 

 

Message Transfer Power Usage:  

12 𝑏𝑦𝑡𝑒𝑠

50𝑘𝑏/𝑠
=  .002 𝑠/𝑚𝑠𝑔 

. 002 𝑠/𝑚𝑠𝑔 ∗  13.4𝑚𝐴 =  26.8 µ𝐴/𝑚𝑠𝑔 
1

(𝑠)
 ∗  26.8 µ𝐴/𝑚𝑠𝑔 =  

26.8

(𝑠)
µ𝐴 

26.8

(𝑠)
 µ𝐴/𝑚𝑠𝑔 ∗  2 𝑦𝑒𝑎𝑟𝑠 ∗  365 𝑑𝑎𝑦𝑠 ∗  24 ℎ𝑜𝑢𝑟𝑠 =  𝑃𝑡𝑥= .470/(s) Ah             (7) 

 

Wake up/Set up Time Power Consumption: 

1 𝑚𝑠/𝑚𝑠𝑔 ∗  
1

(𝑠)
 𝑚𝑠𝑔/𝑠 =  𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =  

. 001

(𝑠)
 

. 001

(𝑠)
 ∗  2.5𝑚𝐴 =  

2.5

(𝑠)
 µ𝐴 

2.5

(𝑠)
 µ𝐴 ∗  2 𝑦𝑒𝑎𝑟𝑠 ∗  365 𝑑𝑎𝑦𝑠 ∗  24 ℎ𝑜𝑢𝑟𝑠 =  𝑃𝑊𝑎𝑘𝑒  =  .0438/(𝑠) 𝐴ℎ             

(8) 

 

Active Power Usage: 
1

(𝑠)
𝑚𝑠𝑔/𝑠 ∗  .00192 𝑠/𝑚𝑠𝑔 =  𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =  .00192/(𝑠) 

. 00192

(𝑠)
 ∗  2.5𝑚𝐴 =  

4.8

(𝑠)
 µ𝐴 

4.8

(𝑠)
µ𝐴 ∗  2 𝑦𝑒𝑎𝑟𝑠 ∗  365 𝑑𝑎𝑦𝑠 ∗  24 ℎ𝑜𝑢𝑟𝑠 =  𝑃𝐴𝑐𝑡𝑖𝑣𝑒  =  .0841/(𝑠) 𝐴ℎ             
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(9) 

 

Thermistor Power Usage During Transfer: 

25.5 𝑘Ω (𝑇ℎ𝑒𝑟𝑚𝑖𝑠𝑡𝑜𝑟)  +  25.5 𝑘Ω (𝑆𝑒𝑟𝑖𝑒𝑠 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒)  =  𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

3.3𝑉 =  𝑉𝑜𝑙𝑡𝑎𝑔𝑒 
3.3 𝑉

51 𝑘Ω
 =  64.7 µ𝐴 

. 00192/(𝑠)  =  𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 
. 00192

(𝑠)
 ∗  64.7 µ𝐴 =  124.2/(𝑠) 𝑛𝐴 

124.2

(𝑠)
𝑛𝐴 ∗  2 𝑦𝑒𝑎𝑟𝑠 ∗  365 𝑑𝑎𝑦𝑠 ∗  24 ℎ𝑜𝑢𝑟𝑠 = 𝑃𝑡ℎ𝑒𝑟𝑚𝑖𝑠𝑡𝑜𝑟 =  .002176/(𝑠) 𝐴ℎ          

(10) 

 

Total Amp-hours: 

Total Ah = (6) + (10) + (7) + (8) + (9) 

. 0123 + 
.6001

(𝑠)
 𝐴ℎ =  𝑇𝑜𝑡𝑎𝑙 𝐴𝑚𝑝 − ℎ𝑜𝑢𝑟𝑠              (11) 

Since we are planning on having the device transmit every 5 minutes, then (s) would be 300, so total 

power consumption in two years using equation 11 is: 

. 0123 + 
.6001

300
 𝐴ℎ =  14.3 𝑚𝐴ℎ                       

(12) 

Thus, the transmitter needs a battery that outputs 3V and has at least 14.30 mAh, and button batteries 

satisfy that condition. We chose the Panasonic CR2025 which has output of 3V and capacity of 165 mAh, 

it can be purchased for as cheap as 30 cents and widely available everywhere[8]. That particular button 

battery will allow the transmitter to theoretically run up to 20 years. 

2.2.4 Transmitter Block 

The RF transmitter is built into the CC1310 chip. Among the variety of available frequencies that the 

CC1310 chip is able to transmit at, we chose 915 MHz because it is unregulated. The RF transmitter 

takes the output of the ADC, prepends a 2-byte magic number and a 2-byte ID as a header, and appends 

a 2-byte CRC to form the full 8-byte packet. 

Table 2.2 Packet Structure 

Bytes 0-3 Bytes 4-5 Bytes 6-7 Bytes 8-9 Bytes 10-11 

Preamble 
(0xAAAAAAAA) 

Magic 
Number 
(0xBEEF) 

Tag ID 
Number 

Temperature (in 
form of ADC block 
output) 

2 byte CRC 

 

Since we picked the transmission to be 915 MHz, the antenna is a 915 MHz capable antenna. We used a 

meandering monopole trace antenna because among trace antennas it boasts the best efficiency with 
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the main tradeoff being area on the printed circuit board (PCB) [7]. Because our overall physical device is 

significantly larger than the PCB needs to be, we had sufficient room for a large trace antenna.  

2.2.5 Receiver Block 

In the initial receiver design, we intended to use the RFM69 transceiver unit to receive the 915MHz 

packets. In the end, we chose to use the TI CC1310 Launchpad Development Board instead to save on 

development cost because we already had the part. It performs functionally the same since the both 

transmit data the received data to a computer over a serial interface. To receive the data from the 

receiver, we intended to write python software on a Raspberry Pi. Because Python is cross-platform, we 

chose to use a laptop computer instead to save on development cost.  

One of the more important functions of the Receiver Unit is to translate the ADC output back into a 

human-readable temperature. We were able to do that by using Equation 5 from Section 2.2. The final 

code can be seen below in Figure 2.3.  

import serial 
import datetime 
import math 
 
print('\n\nCowMon v0.1') 
print('    by Michael Goldstein, Yue Wang, and Cain Benink\n') 
print('Listening for incoming packets on ttyACM0...\n') 
 
def toFTemp(t): 
    if (v > 1): 
        return -1; 
    return 4050.0/math.log(-430326*v/(v-1)) - 273.15 
 
ser = serial.Serial('/dev/ttyACM0', 9600, timeout=None) 
while(True): 
    packet = ser.read(6) 
    magic = int.from_bytes(packet[0:2], byteorder='little') 
    tagid = int.from_bytes(packet[2:4], byteorder='little') 
    temp = int.from_bytes(packet[4:6], byteorder='little') 
    ftemp = toFTemp(temp) 
    print("Packet Received at %s" % str(datetime.datetime.now()).split('.')[0]) 
    print("    Magic:     %04X" % magic) 
    print("    ID:        %04X" % tagid) 
    print("    Temp:      %04X" % temp) 
    print("    convTemp:  %f\n" % ftemp) 

Figure 2.3 Receiver Python Code 

During the design, we had planned to have the receiver upload the data to an AWS database. Due to 

time constraints, we were unable to setup a database and make the receiver upload to it. Instead, to 

have data persist on the filesystem, the output of the python script was piped into a file where that 

would be processed and displayed in a GUI.  

2.3 Verification 

2.3.1 Sensor Block 

For the sensor block to meet our requirements, it has to output the voltage range shown in figure 2.2. At 

38.6 deg C we want it to output 1.52V and at 40 deg C we want it to output 1.475V. The sensor must 

also be accurate by .2 deg C across that same temperature range. The sensor also has to output linearly 
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between these values. Lastly, the sensor must reach out 150mm from its base. 

Verification of the length is easy because we bought a thermistor that was 150mm and measured it to 

be 150mm in the lab with a ruler. To test the correct output voltages we set up figure 2.1 on a 

breadboard and took voltage readings at different temperatures. 

 
Figure 2.3: Sensor Unit Testing on Breadboard 

 
Figure 2.4: Sensor Unit Measurements 

Using the measurements in Figure 2.4,  we calculated to see if the voltage reading of the thermistor 

matched the temperature reading of the infrared temperature sensor. Combining equation (4) and (5), 

we simplified them down so we could obtain temperature from voltage. 

𝑅 =
8500 𝑥𝑉𝑜𝑢𝑡 

1+𝑉𝑜𝑢𝑡 /3
              (13) 

𝑇 =
𝐵

𝑙𝑛(𝑅/𝑅𝑜)+𝐵/𝑇𝑜
=

4050

𝑙𝑛(0.18085𝑥𝑉𝑜𝑢𝑡 )−𝑙𝑛(1−𝑉𝑜𝑢𝑡 /3)+4050/298.15
        

(14) 
 

Plugging our voltage reading into equation (14), we got the temperature to be 23.3 C, which is a lot 

different than the 24.5 C that the infrared temperature sensor measured. We then unplugged the power 

supply and measured each component to see if we have the right values. The resistor gave us the 
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expected 25.5 kΩ while the thermistor was at 49 kΩ, and plugging that value into equation (5) gave us a 

temperature of 24.24 C which is within our requirement range of 0.2 C away from 24.5 C. We then 

concluded that attaching a separate power supply on the breadboard affected the circuit, but we were 

unable to get the complete PCB working so we were unable to test the sensor unit with a coin cell 

battery instead. 

2.3.2 Control Block 

To verify that the control block was working we used the debugger on the dev board to verify it was 

receiving data from the thermistor, packaged it with the magic number, ID and CRC and sent it out for 

transmitting. To do this we ran our software with the debugger running and fed a voltage input into the 

GPIO that was for the thermistor. We made sure the output IO pin to the antenna was a 12-byte packet 

that contained the 4-byte preamble (used to synchronize the transmitter and receiver), 2-byte magic 

number “0xBEEF”, 2-byte temperature data, 2-byte ID and 2-byte CRC. 

2.3.3 Power Block 

To verify the power block was working we tested if the ground plane and power pins were getting the 

3V3 and we tested power usage when transmitting and on standby. When we looked at the current 

usage when the the circuit was transmitting, the circuit was drawing 13.4mA which matched what we 

calculated in the power calculations. We were unable to get the chip to go into standby mode and thus 

were not able to fully verify the power consumption requirements.  

2.3.4 Transmitter Block 

For the transmitter to match our requirements, we need to make sure that the impedances of both the 

antenna itself and the network connecting the antenna to the microprocessor are 50 Ω. This is to ensure 

that there are no power loss due to unnecessary reactances and that the signal passing through will 

reflect backwards as little as possible. 

First we tuned the antenna. We made sure that there were no other components attached to the 

antenna, and then we connected a SMA wire to the antenna pad. We then used a Network Analyzer 

(NA) to scan the antenna’s frequency response so that the S11 parameter which is a variable in 

determining the input reflection, is as low as possible. 



12 
 

 
Figure 2.5: Antenna Tuning Connection 

Figure 2.6: Antenna Tuning Results 

Figure 2.6 above is the pictures of a successful match. As visible on the left, by adding another wire onto 

our existing antenna and trimming it down, we eventually got the dip in S11 value to 915 MHz, meaning 

that we have the lowest possible S11 value when transmitting at 915 MHz. 

Then we had to do the component matching. Here we cut the trace connecting the antenna to the rest 

of the pcb, and attached a SMA wire going into the network connecting to the antenna. 
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Figure 2.7: Component Matching Connection 

 

Figure 2.8: Initial Network Analyzer Measurements 

We can then measure the network on the NA, with the results in Figure 2.8 above. We need to get the 

marker at 915 MHz to the center of the Smith chart, so we use Advance Design Systems software to 

simulate what would happen if we added a matching network to our existing network. 
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Figure 2.9: Achievable Component Impedance Correction 

We see from Figure 2.9 that with the part values we currently possess, we can make a matching network 

using two inductors that will bring the network on the pcb pretty close to 50 Ω. We then run another 

simulation using the additional matching network to make sure that these results are correct. 

 

Figure 2.10: ADS Simulation of Matching Network Left and Simulation Results Right 

On the left figure of Figure 2.10, the antenna is represented by the box on the left side with a resistance 

of 50 Ω, that was what we tuned it to earlier. On the right figure of Figure 2.10 is another box with the 

impedance of our network that we measured on the NA. We run the simulation for a signal between 

910 and 920 MHz, and see that on the right, the small red dash is where we expected it to be. 

We then installed this matching network onto our PCB, and remeasured it on the NA. Unfortunately, the 

results did not match our simulations. 
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Figure 2.11: After Matching Network Results 

We can see from Figure 2.11 that the 915 MHz marker is not where we expected it to be, so we 

removed the matching network and tried again. Our second attempt was also met with failure, and at 

that point we had to stop testing because some of the pads on the PCB fell off and we could no longer 

solder. Our initial plan was to solder three full boards, but unfortunately the orders were not completed 

properly and we only ended up with some of the parts we needed. Our teaching assistant helped us find 

some of the parts we needed, but in the end we only had enough parts to finish soldering two complete 

boards. Since we needed one board untouched by testing to show the complete design, after the one 

we tested on had its pad fall off we were unable to continue component matching. 

2.3.5 Receiver Block 

 
Figure 2.12: Measuring Distance Between Test Points 

The receiver block requirements are found in Table A.5. Requirement 1 was verified by first developing 

software on a second TI CC1310 Launchpad Development Board to periodically transmit packets at 

915MHz. As seen in Figure 2.12, using a Google Maps ruler, we measured out a distance between two 

points outside the ECE building that were about 106m apart.  
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Figure 2.13: Conducting the Receiver Verification 

As seen in Figure 2.13, a group member then stood at each measured endpoint: one with the tag unit 

and one with the receiver unit. We then verified that the receiver unit was successfully receiving the 

packets. 

The same test also verified Requirement 2. The receiver software outputs the contents of the packet 

which we were able to manually compare with what was transmitted. Requirement 3 was verified by 

feeding test known ADC readings into the Python software’s conversion function and verifying that the 

output was correct. 
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3 Costs 

3.1 Parts 
Table 3.1    Parts Costs - Tag Unit  

Manufacturer Part Number Part Type Unit Px 100 Unit Px 5000 Supplier 

Texas Instruments CC1310F32RHBR Microcontroller $3.740 $2.200 TI Store 

Panasonic CR2025 Battery $0.222 $0.159 Mouser 

Linx BAT-HLD-001 Battery Holder $0.233 $0.183 Mouser 

Murata NXFT15WB473FA2B150 Thermistor $0.274 $0.172 Mouser 

Panasonic ERJ-2RKF2552X Resistor $0.006 $0.003 Mouser 

Murata 81-BLM18HE152SN1D Ferrite Beads $0.102 $0.602 Mouser 

Murata 478-9839-1-ND Capacitor $0.750 $0.750 Digi-Key 

Murata 490-1320-1-ND Capacitor $0.100 $0.100 Digi-Key 

Murata 490-6328-1-ND Capacitor $0.100 $0.100 Digi-Key 

Murata 490-5922-1-ND Capacitor $0.100 $0.100 Digi-Key 

Murata 90-5948-1-ND Capacitor $0.100 $0.100 Digi-Key 

Murata 490-5939-1-ND Capacitor $0.100 $0.100 Digi-Key 

Murata 490-5872-1-ND Capacitor $0.100 $0.100 Digi-Key 

Murata 490-5934-1-ND Capacitor $0.100 $0.100 Digi-Key 

Murata 490-7282-1-ND Capacitor $0.100 $0.100 Digi-Key 

Murata 445-1023-1-ND Inductor $0.190 $0.190 Digi-Key 

Murata 490-2628-1-ND Inductor $0.100 $0.100 Digi-Key 

Murata 490-6846-1-ND Inductor $0.180 $0.180 Digi-Key 

Murata 490-1142-1-ND Inductor $0.170 $0.170 Digi-Key 

Vishay Dale 541-25.5KLCT-ND Resistor $0.100 $0.100 Digi-Key 

Vishay Dale 541-4.70KLCT-ND Resistor $0.100 $0.100 Digi-Key 

Vishay Dale 311-100LRCT-ND Resistor $0.100 $0.100 Digi-Key 

Vishay Dale 541-22JCT-ND Resistor $0.100 $0.100 Digi-Key 

Total   $7.167 $6.009  

 

Table 3.2    Machining & Fabrication Costs - Tag Unit  

Part Type Quote Description Unit Px 100 Unit Px 5000 Supplier 

PCB 50x40mm, 1.6mm thick, 6mil spacing $4.900 $0.931 PCBWay 

Housing Plastic Case, 3D printed ABS $3.938* $3.938* Illinois MakerLab 

Total  $8.838 $4.869  
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*Estimate based on $0.15/g * 1.05g/cc * 25cc 

 

Table 3.3    Unit & Lot Costs - Tag Unit 

Unit Price, 100 $16.005 

Unit Price, 5000 $10.878 

Lot Price, 100 $1,600.500 

Lot Price, 5000 $5,439.000 

 
Table 3.4    Parts Costs - Receiver Unit  

Manufacturer Part Number Part Type Unit Px 1 Unit Px 100 Supplier 

Raspberry Pi Pi 3 Model B Computer $39.950 $39.950 Adafruit 

Johanson 0915AT43A0026E Antenna $1.280 $0.574 Mouser 

Kingston SDC10/4GB Micro SD Card $6.490 $6.490 Amazon 

CanaKit Pi MicroUSB Supply Power Supply $7.990 $7.990 Amazon 

Sparkfun COM-13909 RF Transmitter $4.950 $4.950 Mouser 

Total   $60.66 $59.954  

 

Table 3.5    Unit & Lot Costs - Receiver Unit 

Unit Price, 1 $60.660 

Unit Price, 100 $59.954 

Lot Price, 100 $5,995.400 

3.2 Labor 

3.2.1 Research and Development 

We have three team members doing research and development for approximately 20 hours per week 

for about 14 weeks. 2.5 * 3*20*14*$45 yields a research and development cost of approximately 

$94,500. 

3.2.2 Assembly 

Assuming that each of us can assemble 15 tag units per hour, assembly adds $3 ($45/15) to the unit 

cost. This changes the 5,000 lot unit price to $10.586 per unit and the total lot price to $52,930. 

Assuming that each of us can assemble 3 receiver units per hour, assembly adds $15 ($45/15) to the unit 

cost. This changes the 100 lot unit price to $74.954 per unit and the total lot price to $7,495. 

3.3 Grand Total 
The grand total cost to research, develop, order parts, and assemble a 5,000 lot of tag units and a 100 

lot of receiver units is $94,500 + $52,930 + $7,495, which comes out to a total of $154,925. 
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4 Ethical Considerations 

4.1 Relevant IEEE Ethics Guide Provisions[10]:  
 

1) to accept responsibility in making decisions consistent with the safety, health, and welfare of the 

public, and to disclose promptly factors that might endanger the public or the environment;  

This ethic guideline is important to us because what we are working on is very tightly related to public 

health. Catching sick cows before they are used for meat or milk produce is an important part of our 

society. 

3) to be honest and realistic in stating claims or estimates based on available data;    

It is important for us to not make any false or inaccurate claims in the design, research and testing that 

we do for our project. These will only hurt us and other engineers around us. 

6) to maintain and improve our technical competence and to undertake technological tasks for others 

only if qualified by training or experience, or after full disclosure of pertinent limitations;  

This project is aimed at improving all of our technical competence and knowledge to better our 

understanding of our field. 

7) to seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to 

credit properly the contributions of others;  

Throughout our design process we will be asking for honest criticism of our work by peers, TAs and 

professors. We must be able to accept criticism of our work even if we do not agree. Looking at our 

project from multiple points of view will help in the growth of our technical and business skills. 

 10) to assist colleagues and co-workers in their professional development and to support them in 

following this code of ethics.  

During the duration of the design process it is very important for us to assist and support each other in 

our work. We are here to improve our technical and general engineering skills and we can do that better 

by working together as a team. 
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5 Conclusion 
 

Our project, Livestock Temperature Monitor, proved to be an excellent learning opportunity. Many of 

the difficulties we faced were not anticipated. None of us were familiar with RF theory and, in turn, 

developing the PCB and tuning the antenna proved to be a much greater challenge than expected. 

Soldering the PCBs was also a huge challenge and likely prevented us from being able to successfully 

program the microcontroller on the PCB.  

Despite challenges, we accomplished a great deal. We were able to get an approximately matched 

circuit for the trace antenna on our PCB. We wrote embedded software that successfully read an analog 

temperature and transmitted data over RF 915MHz to a receiver. We wrote receiver software that could 

transform the voltage reading back into a temperature. We also gained a great amount of insight as to 

what future work needs to be done in order to make this project commercially viable. 

Quite a bit of future work would be needed to make our product usable. We would need to successfully 

program the microcontroller on the PCB. Redoing the layout of the PCB to use larger parts where 

possible and adding more test pads for programming pins would help with this. Also, using better 

soldering irons with a microscope would better enable us to successfully solder small components. A tag 

would need to be designed in CAD and 3D printed so that the PCB could be inside. The trace antenna 

would need to be rematched assuming that the tag and a cow’s ear are part of the antenna so that in 

the real world the antenna still has maximum gain at 915MHz. An AWS database would need to be 

setup to hold the data from the receiver. Lastly, software algorithms would need to run on the data in 

order to detect which animals are running fevers and a GUI would need to be created to clearly present 

this information to the end user.  

Alternative designs could go with an approach other than an eartag. Perhaps an RFID-like chip could be 

implanted that would transmit temperature data to a receiver located inside a feeder any time a cow 

goes to eat. Running a scientific experiment of our completed project would be necessary to determine 

if the ear tag approach would be successful with an actual cow. 
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Appendix A Requirements and Verifications 
 

A.1 Sensor Module 
Table A.1:   Sensor Module Requirements and Verification 

Requirement Verification 

1. The Sensor output a voltage that is 
related to the sensed 
temperature. 

a. The Sensor shall output a 
voltage range of .1V, +/- 
.01V, linearly for the 
temperature range 38.6 C 
to 40 C respectively. 

2. The Sensor shall be able to reach 
into a cow’s ear. 

a. The sensor shall be able to 
reach 150mm, +/- 10mm, 
from the ear tag. 

1. The sensor shall be able to accurately 
measure temperature. 

a. The sensor will be put in a 
temperature chamber. The 
chamber temperature will be 
varied from 38.6 C to 40 C over 4 
hours, starting at 38.6 and 
increasing at a rate of .35 C/hour. 
We will use a multimeter to 
measure the output voltage. If the 
sensor outputs a range of .1V, +/- 
.01V,  linearly over the 
temperature range it passes. 

2. The Sensor shall be able to reach into a 
cow’s ear. 

a. We  will use a tape measure to 
measure from the base of the 
sensor location on the board to 
the tip of the sensor. If the length 
is 150mm, +/- 10mm, it passes. 

 

A.2 Power Module 
Table A.2: Power Module Requirements and Verification 

Requirement Verification 

1. The power module shall provide 
power to the device at least 2 
years in temperatures that cows 
can survive outside, as low as 0 
C[9] and  up to 50C. 

a. The power module shall 
provide 20mAh total, +/- 
1mAh, over at least 2 
years. 

b. The power module shall 
be able to provide 

1. The power module shall power the device 
for no less than 2 years. 

a. We will run the power module, 
with a 225 Ω load, for 4 hours and 
measure the total Amp-hours 
used with a ammeter. If the device 
uses less than 4.57 uAh, +/- .2 
uAh, then the module passes. 

b. The power module, with a 225 
ohm load, will be put in a 
temperature chamber that will 
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13.4mA, +/- .1mA, and a 
constant 3V, +/- .1V. in 
temperatures 0 C to 50C.  

vary the temperature from 0C to 
50C over 4 hours, rate of 12.5 
C/hour, and power measurement, 
with a wattmeter, will be taken. If 
the power module outputs 
13.4mA and a constant 3V, +/- .1V, 
it passes. 

 

A.3 Control Module 
Table A.3: Control Module Requirements and Verification 

Requirement Verification 

1. The control module software shall 
receive sensor data. 

a. The control module 
software shall send an 
enable signal every 5 
minutes, +/- 1 second. 

b. The control module 
software shall allow a 
1ms, +/- .5ms, wake up 
time before each 
processing of sensor data. 

c. The control module 
software shall go into 
standby mode after 
transmission is finished. 

2. The control module shall package 
the sensor data. 

a. The control module 
software shall convert the 
analog thermistor voltage 
data into 4 bytes of digital 
data and append the 
voltage data onto the 4 
byte ID data to make an 8 
byte packet. 

3. The controller module shall hold in 
memory a unique ID. 

a. The controller module 
shall use memory to save 
a unique 4 byte ID. 

1. The control module shall receive sensor 
data. 

a. Run the control module for 30 
minutes and using an oscilloscope, 
track the input voltage and 
current. If we observe an enable 
signal every 5 minutes then it 
passes. 

b. Run the device for 30 minutes and 
using an oscilloscope, track the 
input voltage and current. If we 
observe a 1ms, +/- .5ms, active 
current draw, 2.5mA, before a 
transmitting current draw, 
13.4mA, then it passes. 

c. Run the device for 30 minutes and 
using a oscilloscope track the 
current draw. If between the 
active/transmit cycle, every 5 
minutes +/- 1 second, the current 
draw is the standby current, 0.7 
µA, then it passes. 

2. The control module shall package the 
sensor data. 

a. Run the control module for 30 
minutes and use an oscilloscope 
to track the “tx” output pin. If 
every 5 minutes, +/- 1 second, the 
“tx” output pin outputs an 8 byte 
packet, with the first 4 bytes as 
the digital data and the last 4 
bytes as the ID data, it passes. 

3. The controller shall hold in memory a 
unique ID. 

a. Run the control module for 30 
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minutes and use an oscilloscope 
to track the “tx” output pin. If 
every 5 minutes, +/- 1 second, the 
“tx” outputs and the first 4 bytes 
are the unique ID it passes. 

 

A.4 Transmitter Module 
Table A.4: Transmitter Module Requirements and Verification 

Requirement Verification 

1. The transmitter module software 
shall transmit the packaged data. 

a. The transmitter module 
software shall transmit 
the 8 byte packet at the 
915Mhz ISM band at 
10dBm, +/- 1dBm for at 
least 100m. 

b. The antenna shall be able 
to transmit data at least 
100m on the 915MHz ISM 
band at 10dBm, +/- 1dBm. 

1. The transmitter module software shall 
transmit the packaged data. 

a. Run the transmitter for 30 
minutes and use an MXA signal 
analyzer to read signals on the 
915MHz band. If an 8 byte 
packet is detected it passes. 

b. Run the transmitter for 30 
minutes 100 meters away from 
the MXA signal analyzer that is 
reading signals on the 915MHz 
band. If an 8 byte packet is 
detected it passes. 

 

 

A.5 Receiver Module 
Table A.5: Receiver Module Requirements and Verification 

Requirement Verification 

1. The receiver module shall receive 
the packaged data. 

a. The antenna shall be able 
to receive data at least 
100m on the 915MHz ISM 
band. 

2. The receiver module software 
shall process the package into 
temperature and ID. 

a. The raspberry pi software 
shall process the 8 byte 
data into the ID data and 
Temperature data. 

3. The receiver module software 
shall convert the 4 byte 
temperature data into a 

1. The receiver module shall receive the 
packaged data. 

a. Run a RF signal generator and 
push a signal to 915MHz 100m 
away from the receiver. If the 
receiver antenna pin outputs the 
transmitted data it passes. 

2. The receiver module shall process the 
package into temperature values. 

a. Send an 8 byte signal using a RF 
signal generator over the 915MHz 
band, and if the raspberry pi 
separates the signal into two 4 
byte packages, first temperature 
then ID, it passes. 

3. The receiver module software shall 
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temperature value. 
a. The raspberry pi software 

shall process the 4 byte 
temperature data into a 
temperature value. 

convert the 4 byte temperature data into 
a temperature value. 

a. Input a 4 byte value into the 
raspberry pi and if the software 
converts the bytes into a 
temperature value it passes. 

 

 

 

 


