Camera Positioning System

ECE 445 Spring 2017 Team 79 TA: John Capozzo Junjiao Tian, Jialu Li & Weicheng Jiang

Outline

- Introduction
- Objective
- Block Diagram
- LABVIEW
- Traversing Sub-System (Stepper Motor)
- Pan & Tilt Unit (Servo Motor)
- Auto-Calibration and Closed-Loop control
- Power Unit
- Overview of the circuit
- Success and challenges
- Recommendations of future work
- Acknowledgement

Introduction - Background

- Manual camera position calibration for particle tracking research is difficult and time consuming
- Used in Renewable Energy & Turbulent Environment Research Group
- Sponsored by John Deere

Current Particle Tracking Equipment

Introduction - Background

- Manual camera position calibration for particle tracking research is difficult and time consuming
- Used in Renewable Energy & Turbulent Environment Research Group
- Sponsored by John Deere

4 Independently Computer Controlled Cameras

Introduction - What have been done.

- A MechSE team built the physical setup last semester.
- The frame can hold four cameras.
- It is roughly 2m by 2m tall and wide.
- Controlled by an Arduino Mega

Completed setup

Objectives For This Semester

- Design an integrated control and processing unit on PCB
- Create a LABVIEW user interface
- Implement auto-calibration unit using snap action switches
- Implement closed-loop control for pan & tilt unit
- Investigate the feasibility of building an integrated power module

Block diagram

- LABVIEW is a widely used visual programming language
- It provides a library to communicate with ATmega328
- Pros:
 - Easy to build a user interface Built in library for communication
- Cons:

Slow loop rate (<30Hz) More difficult to express logic

LABVIEW User Interface

Junjiao Tian

CPS_3.2.1_illini_edition:)

Traversing System - Stepper & Driver

- DQ542MA 2-Phase Hybrid stepper motor driver
- It provides micro-stepping options
- Overvoltage,short circuit protection
- NEMA 23 stepper motor
- 200 steps/rev native resolution

Traversing System - Step Calculation

- 400 steps/rev (motor driver)
- 8 mm travel per revolution (Leadscrew)
- 50 steps/mm
- 1 step = 1 pulse
- # of pulses = distance (mm) * 50 steps/mm

		\frown														
Steps/Rev	1	400		800	1	600	3	3200	6	5400	128	00	256	500	100	0
Steps/mm		50	J	100	2	200	1	400	a.	800	16	00	32	200	12	5

Traversing System - Stepper & Driver

- 4 wire bipolar (2 phase) stepper motor
- Rotor is axially magnetized
- Rotor teeth: 50
- Stator teeth: 48
- Microstepping improves stepping resolution

Pan & Tilt Head - Servo Motor

- Hitec HS-785HB servo
- Voltage range: 4.8V 6V
- Torque: 183 oz/in
- 7 : 1 gear ratio

The 7:1 gear box allows for 196 degrees of rotation and better precision on each axis and 7 times the torque from the servo motors.

Purchased from ServoCity

Pan & Tilt Head - Servo Driver

- Use PCA9685 chip to control the servo motors
- It communicates with ATmega328 through I2C protocol.
- The communication is implemented in LABVIEW

- Slave address
 Control register
 Data
- Three consecutive I2C Write operation in LABVIEW
- Only 1 I2C slave
- Derived the settings from the datasheet

Pan & Tilt Head (Angle Mapping)

Pulse Width (ms) = 0.0042 * Angle (deg) + 2.0067

Junjiao Tian Relationship between angle and pulse width

- PCA9685 accepts pulse width (ms) as input
- User enters angle (deg.) to control the pan & tilt heads
- Every servo is slightly different

Traversing Unit Functionalities

Last semester:

- Arrow keys control
- Need to measure the actual position of the

traversing unit

incremental Distance (Stepper)						
Vertical	Distance 0	Direction				
Horizontal	± 0	Left				
Set Speed		START				

Weicheng Jiang Incremental distance control panel

Added functions in this semester:

- Auto-calibration
- User specified position by coordinates in mm
- User specified position by travel in mm
- Software boundaries

Auto-calibration

- Snap action switches
- Reset origin
- Coordinate display

Calibration		
	OUTPUT Vertical Horizontal	STEPS NEEDED Vertical Horizontal
START	142 117	0

Calibration control panel

Snap action switch on track boundary

Auto-calibration Implementation

- LabVIEW generates short pieces of pulse trains to move the traversing unit step by step to the boundary from an unknown initial position
 - LabVIEW only allows for pulse trains with specified number of pulses

Auto-calibration Implementation

- When snap action switch closes,
 ENABLE on stepper motor driver is pulled high for 2s, and coordinate display is set to 0
 - ENABLE has to be pulled high for at least 1s to stop the stepper motor
- After 2s, ENABLE is pulled low again and the unit moves to the center

Stepper motor driver

Closed-loop Control of Pan&Tilt Head

Disadvantages without feedback and control:

- Actual angular position is unknown
- Errors due to mechanical parts such as gears and the way the servo is installed, and noise in electric signals
- Manual adjustment is imprecise and time-consuming

Solution: installing a potentiometer as an encoder to measure the actual angle and implement control algorithm to correct errors

Pan&Tilt head with camera

Power of Feedback and Closed-loop Control

- Actual angular position display
- Control algorithm ensures actual angle to be within +/- 0.5 degree of the specified angle
- Neutral position of the potentiometer must match bottom position of P&T head

Pan&Tilt head with encoder

Closed-loop Control Implementation

Weicheng Jiang Closed-loop servo control panel

LabVIEW block diagram

Closed-loop Control Algorithm

Get user specified angle

PWM turns on

While the actual angle is outside the range of tolerance

If pan&tilt head is not moving

If actual angle is smaller than specified angle and outside range of tolerance

Increase PWM "ON" time by a small amount

If actual angle is larger than specified angle and outside range of tolerance

Decrease PWM "ON" time by a small amount

Power Specifications

Note: these values are for one unit. There are 8 stepper motors and 8 servos.	Acceptable Input Voltage Range	Chosen Input Voltage with Current Power Adaptor	Input Current Range (measured in field tests)	Current Power Adaptor Specs	
NEMA 23 Stepper Motor	12V ~ 48V	19.5V	330mA ~ 850mA	Dell AC Adaptor Output: 19.5V, 16.9A max, 330W max	
HS-785HB Servo	4.8V ~ 6V	6V	12.5mA ~ 375mA	ServoCity AC Adaptor Output: 6V, 3A max, 18W max	

Build Our Own All-in-one Power Unit?

D1 1N400

TR1

X1-3 O-

X1-4 O

120V 60Hz

- Transformer
- Full-wave rectifier
- Reservoir capacitor
- Voltage regulator

Maximum system current=1*8+0.4*8=11.2A at 19.5V

Stick With Existing Power Adaptors

- Could not find appropriate parts that meet the power requirements of our system
- Building a power unit with high power can be dangerous
- Existing power adaptors work quite well
- Need more time building LabVIEW-chip communication, auto-calibration of the traversing unit and closed-loop control of pan&tilt head

PCB design-schematic

Jialu Li

PCB design-board layout & actual board

PCB board layout

PCB actual board(front)

Jialu Li

PCB design-main chips

- ATmega328 (main microprocessor)
- Requirements
 - Power supply from USB 5V+/-0.5V
 - The RESET pin works properly
 - Communicate with FT230X chip via UART signal and PCA9685 chip via I2C
 - Correct analog and digital I/O input and output
- Verifications
 - The LED connected to SCK pin blink three times
 - Stepper motor control, close-loop feedback control, and calibration unit perform as expected

Schematic of ATMega328

Jialu Li

PCB design-main chips

- FT230X
- Requirements
 - The USB cable should provide a voltage from 5V+/-0.5V to the circuit board
 - Convert the USB signal to UART signal and communicate with ATmega328
 - Data transmission (baud) rate 9600 and packet size 15 byte
- Verification
 - The LABVIEW interface is able to communicate with microprocessor ATmega328

Schematic of FT230X

PCB design-main chips

- PCA9685
- Requirements
 - Power supply from USB 5V+/-0.5V
 - Operates between 24 Hz to 1526 Hz with adjustable duty cycle from 0% to 100%
 - Output 60 Hz signals on PWM channel
 0 to 7
 - Control servo motor by changing PWM signals
- Verifications
 - Close-loop feedback control of servo motors works as expected

PCB design-other components

- Three 3-8 decoder (74AC11138)
 - Used to output correct pulse, direction and enable signals for stepper motors in four quadrants
- Snap action switch signals
 - Signals that come from snap action switches for calibration purpose
- One 3-8 multiplexer (74HC4051D)
 - Analog signals from potentiometer for servo motors in four quadrants
- Servo-motor connections
 - Each line is protected by 220 ohms resistors

PCB design-errors and problems

- First round of PCB order was delayed
- Digikey sent wrong packages of 74AC11138, and we received 74AC138
- Decoders are no longer needed for final Demo
- Snap action switch signals need extra logic OR gate
- SDA & SCL in PCA9685 didn't pull HIGH

Final circuit on perfboard

• We kept three most important chips and completed functionalities for one quadrant

Circuit on perfboard

Successes and Challenges

• Successes

- All designed units are functional
- Designed circuit works properly

• Challenges

- Burn Arduino Uno bootloader to brand-new ATMega328 chip with USBASP, need to figure out the ISP communication, clock setting, etc
- Mount potentiometer to fit with the structure of the servo motor

How potentiometer installed on servo motor

Recommendations for future work

- Expand calibration and servo motor close-loop feedback controls to all camera gantries
- Integrate all necessary circuit parts into one PCB unit

Acknowledgement

- Prof. Chamorro in Renewable Energy & Turbulent Environment Group at the Department of Mechanical Science and Engineering
- Sponsor John Deere
- TA: John Capozzo
- Mark Smart and Skot Wiedmann in Electronics Services Shop

Thank you! Any questions?