Beacon-Controlled Autonomous Network for Trains (BCAN'T)

By

Susan Chen Prithvi Garimalla Jordi Pakey-Rodriguez

Final Report for ECE 445, Senior Design, Spring 2017 TA: Jacob Bryan

> 03 May 2017 Project No. 5

Abstract

BCAN'T is a system for model trains that consists of infrared beacons and a laser time-of-flight sensor in order to enable true set and go operation. Over the course of the project we developed the beacon reading system and it demonstrated it works, as well as a complete control system on the locomotive that interfaces the beacon and time-of-flight data to control to motor and other peripherals. Unfortunately, due to last minute hardware failures, we were unable to integrate all the components onto a locomotive, but most of the components were demonstrated to work on their own.

Contents

1 Introduction	1
1.1 Objective	1
1.2 High-Level Requirements	1
2 Design	2
2.1 Beacon	2
2.1.1 Schematic	3
2.1.2 Bridge Rectifier	4
2.1.3 Voltage Regulator	4
2.1.4 Microcontroller	4
2.1.5 LED Driver	4
2.1.6 IR LED	4
2.2 Locomotive Power	4
2.2.1 Schematic	5
2.2.2 Bridge Rectifier	5
2.2.3 Voltage Regulator	5
2.3 Locomotive Control.	5
2.3.1 Schematic	6
2.3.2 Microcontroller	6
2.3.3 Flash Storage.	6
2.3.4 Voltage Scaler	6
2.4 Locomotive Drivetrain	7
2.4.1 Schematic	7
2.4.2 Motor Controller	7
2.5 Obstacle Detector	8
2.6 Beacon Reader	8
2.7 IR Protocol	8
2.8 Beacon Firmware	8
2.9 Locomotive Firmware	8
2.9.1 Feature List	9
2.9.2 Flow Chart	9
2.10 PC Software	10

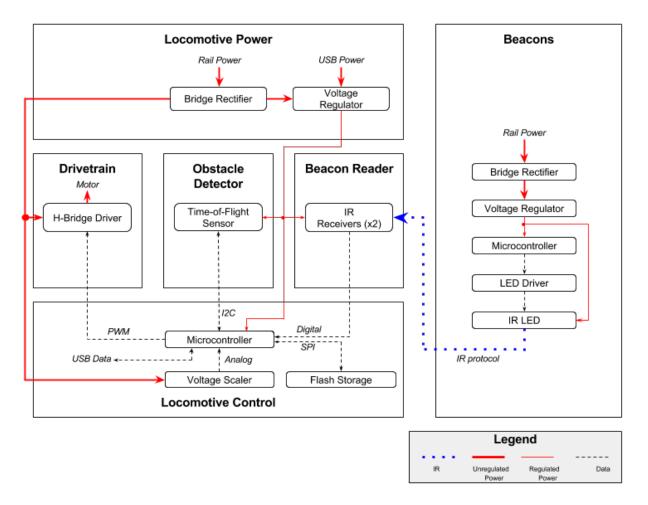
3 Cost	11
3.1 Labor	11
3.2 Parts	11
4 Conclusion.	12
4.1 Accomplishments	12
4.2 Uncertainties	12
4.3 Ethical Considerations.	12
4.4 Future work	12
Reference	13
Appendix A Requirement and Verification Tables	14
Appendix B Calculations	17
B.1 Beacon MOSFET Gate Resistor	17
B.2 Beacon LED Current-Limiting Resistor	17
B.3 Beacon LED Half Viewing Angle	17
B.4 Locomotive Voltage Regulator Resistors	17
B.5 Locomotive Voltage Scaler Resistors	17
Appendix C Schematics	18
C.1 Beacon	18
C.2 Locomotive	19
C.3 Obstacle Detector	20
C.4 Beacon Reader	20
Appendix D Pinouts	21
Appendix E Bill Of Materials	23

1 Introduction

1.1 Objective

Model trains have become more and more advanced over the last few decades, but they are still controlled entirely by a human operator. These human operators are solely responsible for ensuring that no harm comes to the train. A lapse in attention can be disastrous, causing damage that could be very costly to repair. Model trains currently do not have the ability to detect obstacles or other trains in front of them. If not stopped in time a crash may occur, often resulting in derailment or physical damage. Additionally, derailment may occur when a train is traveling at high speeds on a curved tracks. The train has no recourse for these situations other than for the operator to manually slow or stop it to avoid an accident.

Currently, the National Model Railroad Association (NMRA) defines the Digital Command Control (DCC) standard for model trains. DCC allows for digital control of various train functions such as lights, speed, direction, sound, and much more[1]. One downside to DCC is that smooth operation is completely dependent on the human operator who must manually control the train as it is unable to react to its environment autonomously. In addition, DCC has a steep learning curve and setting up a system without prior experience can be quite challenging.


Our solution is to give each locomotive the ability to respond to the track on its own by detecting obstacles and reacting to programmable beacons placed on the track. A distance sensor is placed on the front of the train to detect obstacles directly in front of it. Small beacon modules placed on the track are set to send out unique identifiers to the train to let it know what speed it should travel at. Essentially, the end goal is to have the train sense potential issues along the track that would cause collision or derailment and act to avert such problems. Our solution is a convenient alternative to those who wish to have speed control for their locomotives. The sensors integrated with the locomotive also provide some measure of protection against human negligence by avoiding obstacles and preventing derailment.

1.2 High-Level Requirements

- Must be able to operate indefinitely on existing methods of track power, both analog (DC) and bipolar Digital Command Control (DCC).
- Must be able to detect oncoming obstacles on the track and stop to avoid derailment or damage.
- Must be able to read customizable speed limit beacons that are powered by the tracks and adjust its speed accordingly.

2 Design

Our solution consists of two independent systems: the beacon boards and the locomotive controller. The beacons are small standalone boards on the track that continuously broadcast a unique ID that is read as the train passes over. The locomotive controller consists of three PCB's on the train and is responsible for reading beacons, identifying obstacles, and controlling the motor. The block diagram is shown in Figure 1.

2.1 Beacon

The beacon is small board that sits between two track ties as shown in Figure 2. The image on the left shows the placement of a beacon on the track, and the image on the right shows three individual beacons with their ID labels. Its function is to broadcast a unique ID to the IR receiver board on the locomotive. Each ID is mapped to a specific function that can be programmed on the locomotive control board. A bridge rectifier and a voltage regulator are used to provide 2.8V power to the microcontroller, LED driver, and IR LED. The microcontroller controls the IR LED to continuously broadcast the board's ID for the IR receiver on the locomotive board to read.

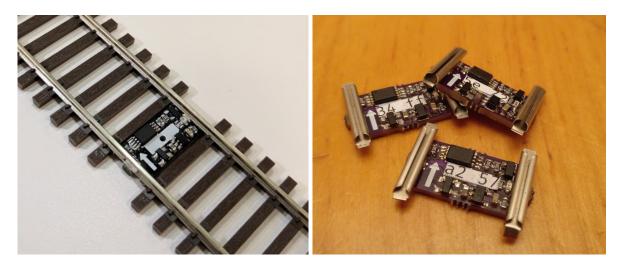


Figure 2: Beacon Boards.

2.1.1 Schematic

The schematics for the beacon board IR LED and power circuits are shown in Figure 3 and Figure 4, respectively. The shunt resistor R5 is used to create a clean 38kHz modulated signal since the LED is unable to switch fast enough. The calculations for R2 and R4 are shown in Calculations 1 and 2 in Appendix B.

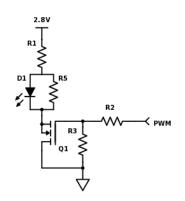


Figure 3: Beacon IR LED Circuit.

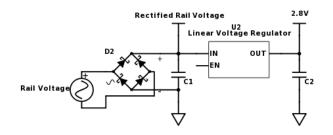


Figure 4: Beacon Power Circuit.

2.1.2 Bridge Rectifier

Since the voltage regulator only takes positive voltage, the full-bridge rectifier is needed rectify the power signals from the rails. It consists of four schottky diodes in a bridge configuration and rectify rail voltages ranging from -16V to +16V.

2.1.3 Voltage Regulator

A linear voltage regulator takes an input from the rectified rail power and bring the voltage down to 2.8V from an input voltage of up to 16V. It provides the power needed for the MCU and its peripherals.

The TPS 709 linear voltage regulator data sheet specifies a minimum input voltage of 2.7V[2]. Testing showed that an input voltage of 3.5V would produce an output voltage of 2.63V, while input voltages lower than 3.5V would produce an output voltage that is below our requirements. Therefore, a input voltage of 3.5V would be the minimum threshold for our project to function properly.

2.1.4 Microcontroller

The microcontroller used is an ATtiny45 8-bit AVR processor. It uses a single GPIO pin to control the LED driver circuit and continuously broadcast the board's unique ID using the IR protocol.

2.1.5 LED Driver

The LED driver circuit consists of an N-channel MOSFET, a gate resistor, and a pull down resistor. The MOSFET conducts current when the I/O pin from the microcontroller is set to high. The gate resistor is used to prevent damage due to overcurrent to the microcontroller and the pull down resistor is used to ensure the MOSFET is turned off when the voltage at the gate is left floating.

2.1.6 IR LED

The 940nm IR LED is used to broadcast a unique ID that the receiver on the locomotive can read. It is controlled by the LED driver circuit using PWM. The viewing half-angle for the LED can be calculated using Equation 1. The calculation for the viewing half angle can is shown in Calculation 3 in Appendix B.

$$\theta_{\frac{1}{2}} = \arctan\left(\frac{V_{max}T}{2H_{min}}\right) \tag{1}$$

Vmax is the max speed of the train, T is the length of one ID message, and Hmin is the minimum distance from the beacon board LED to the IR receivers on the train.

2.2 Locomotive Power

The locomotive power circuit takes an input voltage ranging from -16V to +16V from the rail or 5V from the USB. It then rectifies and regulates that voltage down to 2.8V in order to power the microcontroller and its peripherals. A full bridge rectifier is used to rectify the AC voltage from the rails. The rectified voltage is then inputted to a linear voltage regulator. The SPX3918 adjustable linear voltage regulator has a minimum input voltage of 2.5V and a maximum dropout voltage of 550mV with a 500mA current draw. This means the minimum input threshold voltage in order for the locomotive components to be powered would be 3.35V, allowing for the microcontroller to be able to wait for the input voltage to reach the 3.5V minimum threshold limit for the beacon board to be powered. The circuit for the locomotive power block is shown in Figure 5.

Other designs were considered for the locomotive power circuit. A switching circuit to switch between the USB power source and the rail power source was considered. However, it was simpler to add a protection diode after the USB voltage source. There were also attempts to regulate the input voltage through the full range of rail voltages with switching circuits, switch-mode power supplies, or batteries. The switching circuits were complex and risked shorting the input and output voltages if the timing was not correct. There were no switch-mode power supplies on the market that had a low enough input voltage for the output that was required. Batteries would have defeated the purpose of drawing power from a wall outlet.

2.2.1 Schematic

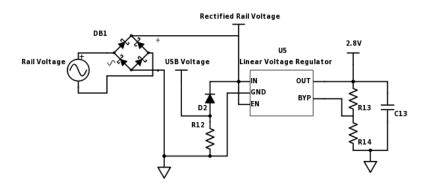


Figure 5: Locomotive Power Schematic.

2.2.2 Bridge Rectifier

The full-bridge rectifier is needed to rectify power signals from the rails before they are routed to the voltage regulator, voltage scaler, and motor driver. It consists of four schottky diodes in a bridge configuration and rectifies voltages ranging from -16V to +16V.

2.2.3 Voltage Regulator

The rectified voltage is fed into a linear voltage regulator in order to bring the voltage down to 2.8V. The 2.8V source is used to power the microcontroller, time-of-flight sensor, IR receiver, and the voltage scale circuit. Calculation 4 in appendix B shows how the adjustment resistors are calculated for the SPX3819 linear regulator for an output voltage of 2.8V using Equation 2.

$$V_{out} = 1.235(1 + \frac{R_1}{R_2}) \tag{2}$$

2.3 Locomotive Control

The locomotive control unit consists of a microcontroller and a USB data connection. If there is a USB connection the control unit will enter a programming mode, otherwise it will run the normal track operation.

This allows operators to map the beacon IDs to one of 128 different speeds[3]. The microcontroller receives a voltage input via the ADC pin from the voltage scale circuit and outputs a PWM signal to the drivetrain to control the speed. The IR receiver sends beacon IDs to the microcontroller in order to determine what speed the train should go. It also stops the train if the time-of-flight sensor detects an obstacle in its path.

2.3.1 Schematic

The main part of the control circuit is the STM32F4 microcontroller. It is connected to a M95512-RDW6TP EEPROM for storage of the beacon mappings. The control schematic is shown in Figure 6.

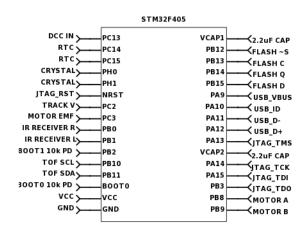


Figure 6: Locomotive Control Schematic.

2.3.2 Microcontroller

The microcontroller used is an STM32F405 32-bit ARM processor. It communicates with the time-of-flight sensor via I2C, the IR receiver digitally, and control the motor with PWM signals. It also stores configuration data for the beacons in external memory.

2.3.3 Flash Storage

An EEPROM flash chip is used to store the beacon mappings. It communicates with the microcontroller over SPI. EEPROM was chosen since we can address individual bytes, which makes performing binary search through the dataset for the beacon mappings more efficient.

2.3.4 Voltage Scaler

The voltage scaler circuit originally included an operational amplifier buffer to improve the accuracy of the voltage readings. However, we were unable to find an operation amplifier that could be powered by a 2.8V source, so errors were corrected in software instead. The voltage scaler circuit consists of a resistive voltage divider, shown in Figure 7, that scales the rectified rail voltage down to a lower voltage that can be read by the microcontroller's ADC. The rectified rail voltage ranges from 0-16V and the microcontroller ADC can read voltages from 0-2.8V. Two resistors divide the voltage to output a range of 0-2.8V, which will give 4096 different values for a 12-bit precision ADC. The calculations using Equation 3 of the voltage divider's resistor values are shown in Calculation 5 in appendix B.

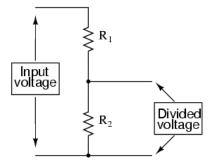


Figure 7: Voltage Divider Circuit.

$$V_{out} = V_{in} \frac{R_2}{R_1 + R_2}$$
(3)

2.4 Locomotive Drivetrain

The locomotive drivetrain unit consists of the motor controller circuit that interfaces the PWM signal from the microcontroller with the rectified rail power in order to power the motor. The circuit consists of a MOSFET H-bridge that is gate-driven by NPN transistors. The drivetrain circuit is shown in Figure 8.

In order to drive the MOSFETs in the H-bridge, optoisolators were also considered. However, we were unable to find an optoisolator that would support driving the LED with our maximum rectified rail voltage.

2.4.1 Schematic

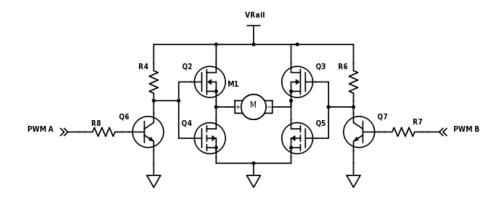


Figure 8: Locomotive Drivetrain Schematic.

2.4.2 Motor Controller

The motor driver circuit consists of two PWM signals driving two NPN transistors which each control an NFET and a PFET. The MOSFETs are configured as an H-bridge and allow the motor to run forwards or backwards at any speed determined by the PWM signals. The frequency of the PWM signals is 10kHz to prevent resonance and noise. The motor current range is ± 1.5 A and the motor voltage range is ± 16 V.

2.5 Obstacle Detector

The obstacle detector consists of a time of flight (TOF) sensor mounted to the front of the train. It detects any obstruction on the tracks that could cause the train to derail and cause an emergency stop. The TOF sensor uses a laser to measure whether the path in front of the train is clear or if the train is approaching an unexpected obstacle. The range of the TOF sensor is approximately 50-200mm[4].

2.6 Beacon Reader

The beacon reader consists of two IR receivers mounted underneath the train on either side. They read beacons as the train passes over them. With two receivers, the microcontroller can infer the direction the train is moving and execute different actions accordingly.

2.7 IR Protocol

The IR protocol uses 38kHz modulation present in many televisions and other consumer devices. We chose this frequency because sensors for it are widely available. Our protocol uses Manchester encoding according to the G.E. Thomas convention with a bit period of 960s and data length of 16 bits[5]. The timing diagram for the protocol is shown in Figure 9.

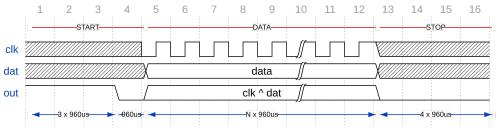


Figure 9: IR Protocol Timing Diagram.

2.8 Beacon Firmware

The beacon firmware is a simple loop that continuously broadcasts the beacon ID using the IR protocol. Every 480us it determines what the next edge is (rising or falling) and sets the GPIO pin accordingly.

2.9 Locomotive Firmware

The locomotive has two modes of operation: track mode and programming mode. It also reacts to pin change interrupts from the IR receiver. At boot, the microcontroller checks to see if USB is connected. If so, it enters programming mode and presents itself as a USB mass storage device. When the user starts to write a configuration file to the locomotive, the microcontroller will buffer each beacon mapping and verify they are being written in ascending order. This is required since at look-up time, it will perform a binary search through the mappings to find the correct one. If an errored mapping comes in, the microcontroller will stop storing more mappings.

In track mode, the microcontroller will continuously check the obstacle detector, stopping the train if there is one. Then it checks whether a beacon ID is read and looks up the appropriate mapping before executing it. Finally, it makes any motor adjustments as necessary.

The IR receiver also works by invoking a pin change interrupt every time its value changes. Using our IR protocol and taking advantage the repetitive pattern of the data we are sending, we need only store one message length worth of pin changes to calculate the beacon ID. When we have the requisite data, we set a ready flag which will trigger the main event loop to look up and execute the mapping.

2.9.1 Feature List

- Mount as USB mass storage device if USB plugged on boot
- Stores the beacon mappings on flash memory
- Reads beacons through pin change interrupts
- Can stop the train if an obstacle is detected
- Can continuously adjust the motor speed and direction based on track conditions

2.9.2 Flow Chart

The flowchart for the locomotive operation is is shown in Figure 10.

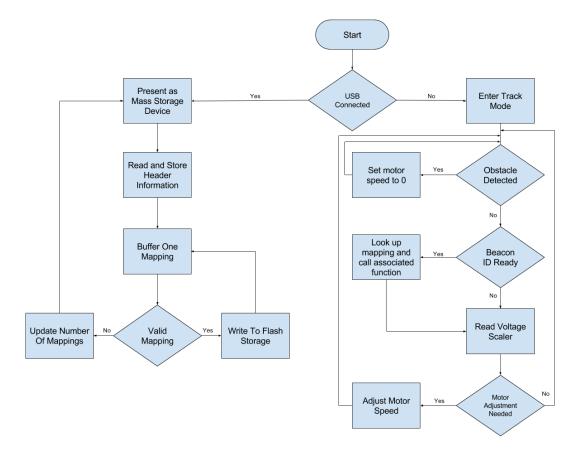


Figure 10: Locomotive Firmware Control Flow.

2.10 PC Software

Figure 11 shows the web interface (hosted online here) to program the beacons. Once specifying the ID, the user can select the instances where the mapping applies and the action the beacon corresponds to.

- Allows user to add any number of beacon mappings
- Each mapping consists of a beacon ID, description, direction of travel, direction of drain, function, and additional parameters for that function
- Clicking Save downloads a file that can be copied to the USB mass storage device to program the mappings

BCAN Configurator	Beacon Protocol Help	
		Save +
0x ca53	Travel Direction F R Train Direction F R Speed + 72	×
0x d61a	Travel Direction 🕑 F 🕑 R Train Direction 🗹 F 🗹 R F2 🗢 89	×
0x d61a	Travel Direction 🗹 F 🔤 R Train Direction 🗹 F 🔤 R Direction 🗢 2	×
0x f43d	Travel Direction 🛛 F 🗹 R Train Direction 🗹 F 🗹 R Custom 🗢 15	×

Figure 11: Beacon Configurator Website.

3 Cost

In order to keep costs low, we chose a locomotive microcontroller that can be switched out with a cheaper one in case the user did not require as many peripherals. We also kept the locomotive board limited to 2 layers as a 4 layer board would have significantly increased the price. On the beacon side, we kept the BOM to under \$5 in single quantities, and have already designed a v2.0 with a cheaper microcontroller that has a \$1 BOM at quantity 1000.

3.1 Labor

Name	Total Hours	Hourly Rate	Total (\$)	Total * 2.5
		(\$)		(\$)
Susan Chen	170	36.00	6,120.00	$15,\!300.00$
Prithvi Garimalla	170	36.00	6,120.00	$15,\!300.00$
Jordi Pakey-Rodriguez	170	36.00	6,120.00	$15,\!300.00$
Total	510	108.00	$18,\!360.00$	45,900.00

Table 1: Labor Costs

3.2 Parts

We spent \$200 on parts which, combined with our \$45,900 labor costs, gives a total project cost of \$46,100.

4 Conclusion

4.1 Accomplishments

While our project definitely had some issues that kept it from being a complete success, the most critical and innovative part, beacon reading, worked. It was demonstrated to be versatile and the speed at which the IDs could be read exceeded our expectations. Furthermore, we designed the project to be as economical as possible, so the total cost of the materials for a beacon was quite cheap. Should there be demand for this product in the model train community, we believe there would be a legitimate path to market.

4.2 Uncertainties

We still have a few lingering questions about our project, namely the nature of the eleventh hour failure we experienced. We had soldered the locomotive board and it had been working for two weeks until a short developed two days before the final demo. After thinking we had identified the cause and replaced the suspect component, another short, this time at the output of the 2.8V voltage regulator appeared. This was approximately 18 hours before our final demo and the only solution we saw was to solder together another board. Unfortunately, even though this board had never even been powered, the short was still present. Even after thoroughly examining the board under a microscope, the only theory we have for the second board being faulty is a faulty component. At this point, even though we were able to demonstrate the individual aspects of the project worked, integrating them was not successful.

4.3 Ethical Considerations

There are two potential safety concerns with our project, however we believe they are both within the acceptable tolerances for a general consumer product. The first of these is that the rails of the train track are electrically charged so one could potentially shock themselves. However, we are not changing this characteristic in our design and therefore are not creating any additional safety hazards. This is a well understood risk of model trains so responsible usage dictates they should be kept out of reach of small children or pets. The second is that we are using a time-of-flight sensor that uses a laser. The laser used is Class 1, which means that it is safe for use under normal conditions and while operating within the manufacturer's specifications[4].

In accordance with the IEEE code of ethics, we endeavored to take on technical tasks we feel we are qualified for and seek advice from our mentors for the skills we lack. We sought feedback and criticism for our work and continuously worked to correct our mistakes. We strove for honesty and properly credited individual contributions to our project. Most importantly, we supported and encouraged each other to follow this code of ethics.

4.4 Future work

The software, firmware, and schematics for our project are fully open source and there is no reason why the work on our project has to stop here. Our design choices and decisions are well documented, so should anyone choose to continue our work, they can easily pick up where we left off. We have already designed a v2.0 beacon, and have made a list of changes for the next locomotive version.

References

- [1] "Electrical Standards for Digital Command Control," Datasheet, National Model Rrailroad Aassociation, 2006, accessed February 2017. [Online]. Available: http://download.micron.com/pdf/datasheets/ dram/ddr/512MBDDRx4x8x16.pdf
- [2] "TPS709," Datasheet, Texas Instruments, 2015, accessed February 2017. [Online]. Available: http://www.ti.com/lit/ds/symlink/tps709.pdf
- [3] "NMRA Standard," Datasheet, National Model Rrailroad Aassociation, 2012, accessed February 2017.
 [Online]. Available: http://www.nmra.org/sites/default/files/s-9.2.1_2012_07.pdf
- [4] "VL6180X," Datasheet, Texas Instruments, 2016, accessed February 2017. [Online]. Available: http://www.st.com/content/ccc/resource/technical/document/datasheet/c4/11/28/86/e6/26/44/b3/DM00112632.pdf/files/DM00112632.pdf/jcr:content/translations/en.DM00112632.pdf
- [5] "Manchester Encoding Basics," Datasheet, Atmel, 2012, accessed February 2017. [Online]. Available: http://www.atmel.com/images/atmel-9164-manchester-coding-basics_application-note.pdf
- [6] "IR Receiver Modules for Remote Control Systems," Datasheet, Vishay, 2017, accessed February 2017.
 [Online]. Available: http://www.vishay.com/docs/82434/tsop572.pdf

Appendix A Requirement and Verification Tables

$\operatorname{Requirement}$	Verification	Verification status (Y or N)
1. Must be able to be powered from rail power with a voltage range of $\pm 16V$ and be able to draw a mini- mum of 60mA.	 Connect the board to a bench power supply set at +16V. Verify the LED is lit using a camera. Repeat with -16V. 	
1. Must be able to modulate the LED between 38kHz - 40kHz.	 Connect IR receiver output to an oscilloscope and point it at the IR LED[6]. Verify that the signal is re- ceived. 	
 Must have a view angle given by Equation 1 on the axis parallel to the track. 	1. With the datasheet value for θ and the distance H, solve for VT. Place the receiver at a horizontal distance VT / 2 and a height H from the LED and verify with the oscillo- scope that the ID is read.	

Table 2: Beacon Requirements and Verifications

Requirement	Verification	Verification status (Y or N)
 Must be able to accept voltages of 3.35 to 16V or -3.35 to -16V from the rail supply and output a recti- fied rail power of 2.8±0.2V and sup- ply up to 280mA. 	1. Connect the locomotive to maxi- mum rail power, verify the 2.8V output is active with a multimeter. Reverse the orientation of the train on the track and verify the 2.8V out- put again. Then put a 10 1 Watt resistor across the 2.8V output and measure the current.	
 Must be able to accept power from the USB supply and output 2.8±0.2V power and supply up to 280mA. 	1. Remove the train from the track and connect USB power. Verify the 2.8V output is active with a multi- meter. Then put a 101 Watt resistor across the 2.8V output and measure the current.	

Requirement	Verification	Verification status (Y or N)
1. Must be able to act as a USB Mass storage device when connected to a PC.	1. With the final microcontroller firmware, connect it to a PC to put it into programming mode. Copy a valid mapping file to the Mass Storage Device the microcontroller presents itself as. Then without unplugging the microcontroller, verify the file can be read.	
1. Must be able to store beacon ID mappings when not powered exter- nally.	1. Repeat Verification 1, with the bea- con mappings set between two IDs for which there are physical bea- cons that correspond to turning the lights on and the turning the lights off. Then unplug and reconnect the USB. Power the beacons, then hold the locomotive over the beacons and verify the correct actions occur.	
1. Must be able to scale a voltage range of 0-16V down to 0-2.8V and be read by the microcontroller's ADC with at least 10 bit precision.	1. Write and flash a test program that displays the current current ADC reading over the serial connection to the computer. Power the board over USB while connecting the rail power input to a bench power sup- ply and sweep between 0V-27V and ensure the microcontroller is accu- rately displaying at least 128 dis- tinct speed steps.	

Table 4: Locomotive Control Requirements and Verifications

Table 5: Locomotive Drivetrain Requirements and Verifications

Requirement	Verification	Verification status (Y or N)
1. Must be able to take a PWM signal from the microcontroller and con- trol the motor accordingly.	 Write and flash a test program to the locomotive microcontroller that will cycle through 0%, 25%, 50%, 75%, and 100% duty cycles on the PWM line. Verify the output of the motor controller with an oscil- loscope. 	

Requirement	Verification	Verification status (Y or N)
1. Must detect obstacles at least 50mm in front of the train.	1. Write and flash a test program to the microcontroller that will display over the PC serial connection the values read from the sensor. Place an object at a distance of 50mm in front of the sensor and 8.25mm off the center axis of the train and per- pendicular to the track. Move to 8.25mm off the center axis in the op- posite direction. Verify both times the object is detected.	

Table 6: Obstacle Detector Requirements and Verifications

Table 7: Beacon Reader Requirements and Verifications

Requirement	Verification	Verification status (Y or N)
1. Must be able to sense a 38kHz mod- ulated IR beam and output a de- modulated digital signal.	1. Connect a beacon to rail power. Write and flash a test program that will display over the PC serial con- nection the value read from the IR receiver. Verify that the value read matches the beacon's ID.	

Appendix B Calculations

B.1 Beacon MOSFET Gate Resistor

Ohm's Law: $R = \frac{V}{I}$ I/O input voltage: $V_o = 2.8V$ Max current per I/O pin: 40mAChoose $I_1 = 28mA$ $R_1 = \frac{2.8}{0.028} = 100\Omega$

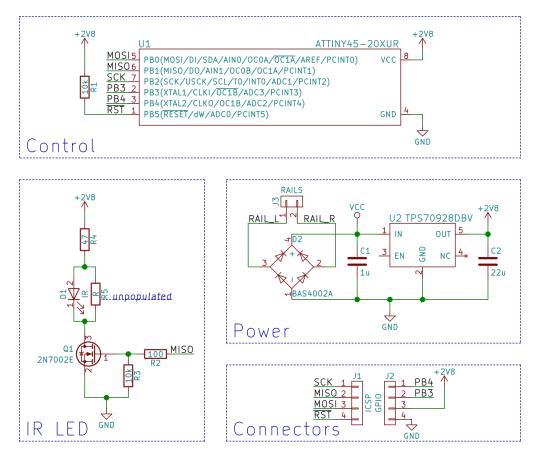
B.2 Beacon LED Current-Limiting Resistor

Forward voltage of IR LED: $V_f = 1.2V$ Supply voltage: $V_d = 2.8V$ Continuous DC current: $I_3 = 34mA$ Using Ohm's Law: $I_3 = \frac{V_d - V_f}{R_3} = \frac{2.8 - 1.2}{R_3} = 34mA$ $R_3 = 47\Omega$

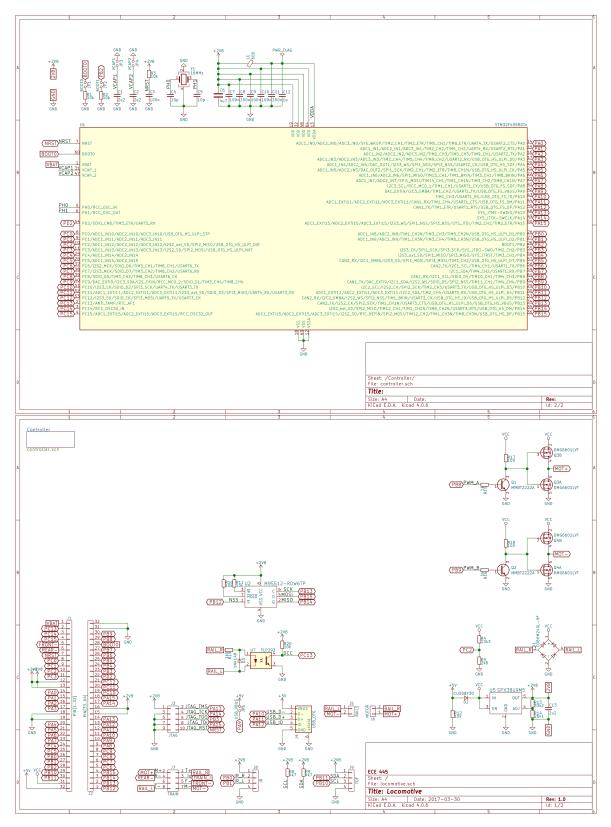
B.3 Beacon LED Half Viewing Angle

$$\begin{split} V_{max} &= 1 \frac{m}{s} \\ T &= 23.04 ms \\ H_{min} &= 6 mm \\ \theta_{\frac{1}{2}} &= \arctan(\frac{V_{max}T}{2H_{min}}) = \arctan(\frac{0.02304}{0.006}) = 75.4^{\circ} \end{split}$$

B.4 Locomotive Voltage Regulator Resistors

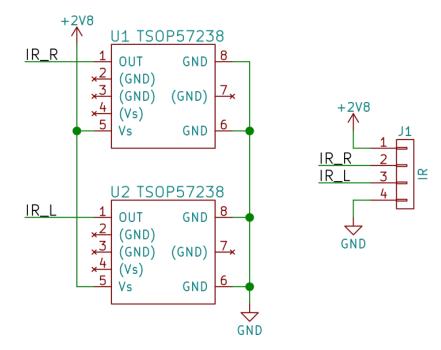

$$\begin{split} V_{out} &= 1.235(1+\frac{R_1}{R_2}) \\ R_1 &= 33.2k\Omega \\ R_2 &= 26.1k\Omega \end{split}$$

B.5 Locomotive Voltage Scaler Resistors


$$\begin{split} V_{out} &= V_{in} \frac{R_2}{R_1 + R_2} \\ V_{in,max} &= 16V \\ V_{out,max} &= 2.8V \\ R_1 &= 13.3k\Omega \\ R_2 &= 2.8k\Omega \end{split}$$

Appendix C Schematics


C.1 Beacon


C.2 Locomotive

C.3 Obstacle Detector

C.4 Beacon Reader

Appendix D Pinouts

Pin	Name	Type	Structure	Connected
1	VBAT	S	FT	VBAT
2	PC13	IO	FT	DCC IN
3	PC14	IO	FT	RTC
4	PC15	IO	FT	RTC
5	PH0	IO	FT	crystal
6	PH1	IO	FT	$\operatorname{crystal}$
7	NRST	IO	RST	$JTAG_{RST}$
8	PC0	IO	FT	
9	PC1	IO	FT	
10	PC2	IO	FT	TRACK V
11	PC3	IO	FT	MOTOR EMF
12	VSSA	S		GND
13	VDDA	S		2V8
14	PA0	IO	FT	
15	PA1	IO	FT	
16	PA2	IO	FT	
17	PA3	IO	FT	
18	VSS	S		GND
19	VDD	S		2V8
20	PA4	IO	TTa	
21	PA5	IO	ТТа	
22	PA6	IO	FT	Rear LED
23	PA7	IO	FT	Front LED
24	PC4	IO	FT	
25	PC5	IO	FT	
26	PB0	IO	FT	IR RCVR R
27	PB1	IO	FT	IR RCVR L
28	PB2	IO	FT	BOOT1 10k PD
29	PB10	IO	FT	TOF SCL
30	PB11	IO	FT	TOF SDA
31	VCAP1	S		2u2 cap
32	VDD	S		2V8
33	PB12	IO	FT	FLASH S
34	PB13	IO	FT	FLASH C
35	PB14	IO	FT	FLASH Q
36	PB15	IO	FT	FLASH D
37	PC6	IO	FT	
38	PC7	IO	FT	
39	PC8	IO	FT	
40	PC9	IO	FT	
41	PA8	IO	FT	UCD UDUC
42	PA9	IO	FT	USB_VBUS
43	PA10	IO	FT	USB_ID
44	PA11 PA12	IO IO	FT FT	USB_D- USB_D+
45				

Table 8: STM32F405RGT6 Pinouts

Pin	Name	Type	Structure	Connected
46	PA13	IO	FT	JTAG_TMS
47	VCAP2	S		2u2 cap
48	VDD	S		2V8
49	PA14	IO	FT	JTAG_TCK
50	PA15	IO	\mathbf{FT}	JTAG_TDI
51	PC10	IO	\mathbf{FT}	
52	PC11	IO	\mathbf{FT}	
53	PC12	IO	FT	
54	PD2	IO	FT	
55	PB3	IO	FT	JTAG_TDO
56	PB4	IO	\mathbf{FT}	
57	PB5	IO	FT	
58	PB6	IO	FT	
59	PB7	IO	FT	
60	BOOT0	Ι	В	BOOT0 10k PD
61	PB8	IO	\mathbf{FT}	MOTOR A
62	PB9	IO	\mathbf{FT}	MOTOR B
63	VSS	S		GND
64	VDD	S		2V8

Table 8 – continued from previous page

Appendix E Bill Of Materials

Description	Part	Type	Value	Package	Qty	Unit	Total
						(\$)	(\$)
ATtiny45	ATTINY45-20XUR	MCU		TSSOP-8	1	1.19	1.19
RST pull-up, gate pull-down	RC0603FR-0710KL	R	10k	0603	2	0.10	0.20
Gate resistor	RC0603FR-07100RL	R	100	0603	1	0.10	0.10
LED limiting	RC0603FR-0747RL	R	47	0603	1	0.10	0.10
IR LED	IR19-21C/TR8	LED		0603	1	0.50	0.50
N MOSFET	2N7002E	NFET		SOT-23-3	1	0.23	0.23
Full bridge rectifier	BAS4002A-RPP	D		SOT143-4	1	0.41	0.41
2.8V LDO voltage regulator	TPS70928DVB	VREG	2v8	SOT-23-5	1	1.37	1.37
Input decoupling cap	UMK107BJ105KA-T	С	1u	0603	1	0.16	0.16
Output decoupling cap	GRM188R60J226MEA0D	С	22u	0603	1	0.27	0.27

Table 9: Beacon BOM

Table 10: Locomotive BOM

Reference	Part	Туре	Value	Package	Qty	Unit	Total
						(\$)	(\$)
U1	STM32F405RGT6	MCU		LQFP-64	1	10.58	10.58
U2	M95512-RDW6TP	EEPROM	512K	TSSOP-8	1	1.00	1.00
U5	SPX3819M5-L/TR	LDO VREG	500mA	SOT-23-5	1	0.72	0.72
U7	TLP293	Optoisolator		SOIC-4	1	0.52	0.52
Q1, Q2	MMBT2222A	NPN BJT		SOT-23-3	2	0.20	0.40
Q3, Q4	DMG6601LVT-7	PFET+NFET	1.28A	TSOT-23-6	2	0.39	0.78
D1	CDBHM240L-HF	Rectifier	2A	TO-269AA	1	0.84	0.84
D2	CUS08F30	Diode		SOD-323	1	0.36	0.36
D3	1N4148X-TP	Diode		SOD-523	1	0.14	0.14
R17, R18	3522100RJT	Resistor	100	2512	2	0.72	1.44
R15, R16	RC0603JR-071KL	Resistor	1k	0603	2	0.10	0.20
R19	RC0603JR-071K5L	Resistor	1k5	0603	1	0.10	0.10
R5	RC0603FR-072K8L	Resistor	2k8	0603	1	0.10	0.10
R8, R9	RC0603JR-074K7L	Resistor	4k7	0603	2	0.10	0.20
R1-R3, R10-R12, R20	RC0603JR-0710KL	Resistor	10k	0603	7	0.10	0.70
R4	RC0603FR-0713K3L	Resistor	13k3	0603	1	0.10	0.10
R14	RC0603FR-0726K1L	Resistor	26k1	0603	1	0.10	0.10
R13	RC0603FR-0733K2L	Resistor	33k2	0603	1	0.10	0.10
C4, C5	CL10C060CB8NNNC	Capacitor	6p	0603	2	0.10	0.20
C3, C7-C11	GRM188R71C104KA01D	Capacitor	100n	0603	6	0.10	0.60
C12	GRM188R61E105KA12D	Capacitor	1u	0603	1	0.10	0.10
C1, C2, C13	CL10A225KP8NNNC	Capacitor	2u2	0603	3	0.12	0.36
C6	CL10B475KQ8NQNC	Capacitor	4u7	0603	1	0.10	0.10
L1	MI0603J601R-10	Ferrite Bead	600	0603	1	0.10	0.10
Y1	CX3225SB16000D0GZJC1	Crystal	16MHz	SMD-4	1	0.66	0.66
J3	FTSH-105-01-F-DV-K	Connector		SMD-10	1	2.90	2.90
J4	10118192-0001LF	Connector		SMD-5	1	0.46	0.46
J7	450-80-272-00-106101	Connector		SMD-8	1	0.76	0.76
J8, J9	BM04B-GHS-TBT	Connector		JST-GH-4	2	0.44	0.88

Reference	Part	Type	Value	Package	Qty	Unit	Total
						(\$)	(\$)
U1	VL6180XV0NR/1	Sensor		SMD-12	1	4.91	4.91
R1, R2	RC0603 JR-0747 KL	Resistor	47k	0603	2	0.10	0.20
C1	GRM188R71C104KA01D	Capacitor	100n	0603	1	0.10	0.10
C2	CL10B475KQ8NQNC	Capacitor	4u7	0603	1	0.10	0.10
J1	BM04B-GHS-TBT	Connector	4	JST-GH	1	0.44	0.44

 Table 11: Obstacle Detector BOM

Table 12: Beacon Reader BOM

Reference	Part	Туре	Value	Package	Qty	Unit (\$)	Total (\$)
U1, U2	TSOP57238TT1	Sensor	38kHz	SMD	2	2.23	4.46
J1	BM04B-GHS-TBT	Connector	4	JST-GH	1	0.44	0.44

All source files, including the source for this document, are hosted on GitHub at 0xdec/bcan.