
Table Tennis Fault Serve Detection

By

Katelyn Riehl

Shraddha Dangi

Vishesh Verma

Final Report for ECE 445, Senior Design, Spring 2017

TA: Zipeng Wang

03 May 2017

Project No. 9

Abstract

In this paper, we discuss the design, implementation, and verification of a system to determine and report

the correct call on the service in competitive doubles table tennis as an assistive tool to the umpire. The

system consists of Power, Ultrasonic Sensor, Camera, and Output Display modules. Each module still has

improvements that need to be made before a final product is ready; however, we were able to demonstrate

basic functionality of each module independently as proof-of-concept for our design.

i

Contents

1 Introduction . 1

2 Design . 1

2.1 System Block Diagram . 1

2.2 Physical Design . 2

2.3 Power Supply. 3

2.3.1 Battery. 3

2.3.2 Power Converter . 3

2.4 Ultrasonic Sensor Module . 5

2.4.1 Ultrasonic Sensor Unit. 5

2.4.2 ATmega Microcontroller . 9

2.4.3 Bluetooth Transmitter. 10

2.5 Camera Module . 10

2.5.1 Raspberry Pi Microcontroller . 10

2.5.2 Camera . 11

2.6 Output Display . 11

3 Design Verification . 12

3.1 Power Supply. 12

3.1.1 Battery. 12

3.1.2 Power Converter . 13

3.2 Ultrasonic Sensor Module . 13

3.2.1 Ultrasonic Sensors . 13

3.2.2 ATmega Microcontroller . 15

3.2.3 Bluetooth Transmitter. 15

3.3 Camera Module . 16

3.3.1 Raspberry Pi Microcontroller . 16

3.3.2 Camera . 17

3.4 Output Display . 17

4 Cost. 18

4.1 Parts . 18

ii

4.2 Labor . 18

5 Conclusion. 19

5.1 Accomplishments. 19

5.2 Uncertainties . 19

5.3 Ethical and Safety Considerations . 19

5.4 Future Work . 20

Reference . 21

Appendix A ATmega Ping Sensor Code . 22

Appendix B ATmega LM555 Timer Code . 24

Appendix C Raspberry Pi Blob Detection Code . 25

Appendix D Raspberry Pi Range Detection . 29

Appendix E Requirement and Verification Table . 32

iii

1 Introduction

In table tennis, the service is the most crucial part of every point. It dictates the style and pace

of play for the point. In doubles, service becomes even more restrictive where the player can only

serve from the right half of his side to the diagonally opposite side of the opponent. Often players

try to “jam” the opponent by serving along the centerline of the table, making the serve challenging

to return. However it is often difficult for the umpire to determine if a serve was “in” or “out” from

the side of the table. With organizations like the National Collegiate Table Tennis Association,

a doubles match is used as a tiebreaker between two teams who had split results in the singles

stage. In such high-stakes matches, even one mistaken call can affect which teams move on in the

competition. Our design addresses the issue of calls that may be difficult to determine “in” or

“out” by detecting which side of the line the ball bounced.

2 Design

2.1 System Block Diagram

The table tennis fault serve detection system consists of four modules as seen in Fig. 1. Modules

include the power supply, ultrasonic sensor module, camera module, and output display. The power

supply module consists of two batteries, one of which is stepped down from 9 to 5 Volts as required

by the ultrasonic sensor circuits and ATmega.

Figure 1: System block diagram

1

Located in the ultrasonic sensor module are the ultrasonic sensor circuits, ATmega microcontroller,

and Bluetooth transmitter. The ultrasonic sensors continuously read in distance data from the

object closest to them, which in our case would be the table tennis ball and relay this information to

the ATmega which computes the correct call of the play.This data is wirelessly transmitted through

Bluetooth to the Raspeberry Pi. The camera module consists of the Raspberry Pi microcontroller

and camera. As the Raspberry Pi is receiving data from the ATmega, the camera is simultaneously

tracking the ball and table using blob detection. When the ball reaches a certain height above the

table, the corresponding sensor readings are used to determine whether the ball was “in” or “out”.

This information is sent to the output display where the LED lights up green for “in” or red for

“out”. The umpire can then press a button to reset the LED for the next play.

2.2 Physical Design

The design for the system as seen in Fig. 2 is solely for one player′s side of the table. For a

complete system, a replicated design is needed for the opponent′s side. The detection system uses

two ultrasonic sensors. The sensors are placed on opposing sides of the table and are attached

to the net post. Utilizing the net posts helps ensure the sensors are aligned correctly as net post

alignment is required for tournaments. Both sensors are angled towards the middle of the table to

view at least 3.5 ft from the end of the table as a serve very rarely lands in the remaining 1 ft.

This was verified through experimentation. Fig. 3 shows empirically that serves don′t generally

land within the first ft. from the net. The ATmega, Bluetooth transmitter, and power supply are

all attached to the underside of the table as to not hinder gameplay.

Figure 2: Physical design

The camera module and output display are located near the umpire approximately 12 ft. away from

the table. The camera is mounted level with the table, approximately 2.5 ft. above the ground.

By choosing such a height, the viewing angle is similar to that of Fig. 4. The output display is

located behind the camera for easy observation and accessibility to the button for the umpire. The

battery and Raspberry Pi are located with the output display.

2

Figure 3: Experimental serve bounce locations

Figure 4: Camera view of table

2.3 Power Supply

2.3.1 Battery

As the sensor module is located approximately 12 ft. from the camera module and output display,

two power supplies are used in the implementation of the design. The camera module and output

display are powered by a 5V/2.4A (6400mAh) rechargeable power bank. Because the Raspberry

Pi is a relatively large consumer of power, choosing a battery of this particular scale allows the

Raspberry Pi and output display to last approximately 2.5 hours. The sensor module is powered

by a 9V to 5V buck converter. The 9V supply is provided by a 9V (500 mAh) battery.

2.3.2 Power Converter

Because the ultrasonic sensor circuit and ATmega require 5V, a 9V to 5V buck converter is used.

The buck converter has a voltage tolerance of ±5% and a maximum current requirement of 70

mA. This current requirement was decided based upon the current draws from the two ultrasonic

sensor circuits and ATmega as seen in Table 1. The buck converter utilizes the Texas Instruments

3

TPS54202 integrated circuit (IC). Features of the IC include over-current protection, over-voltage

protection, and a feedback loop help ensure the intended output voltage is achieved [1]. Fig. 5

displays the circuit schematic for the buck converter.

Table 1: Ultrasonic sensor module voltage and current consumption

Component Voltage (5) Current (mA)

Ultrasonic Sensors (x2) 5 ∼30

ATmega 5 4.1

Figure 5: Buck converter circuit schematic

Found in the datasheet [1] were recommendations of 10.1 µF (minimum), 0.1 µF, 75 pF (minimum),

and 100 kΩ for Cin, Cboot, Cf , and R1 respectively. Based on these suggestions, as well as availability

of components, values of 15 µF, 0.1 µF, 100 pF, and 100 kΩ were chosen for the design.

The value of R2 was calculated using Eq. (1). This equation makes use of a voltage divider used

for the feedback of the IC. A given value of 0.596 was used for the reference voltage, Vref [1]. As

the ultrasonic sensor circuit and ATmega both use 5V, that value was used as Vout. Using Eq. (1),

a value of 13.5 kΩ is calculated for R2. After testing, this value was reduced to 13.1 kΩ.

R2 =
R1 ∗ Vref
Vout − Vref

(1)

The output capacitance was then calculated using Eq. (2). A given value of 500 kHz was used for

fsw, 0.25V for ∆Vout based on design parameters, and 70mA for ∆Iout based on the design. Using

these values, Cout is determined to be 1.12 µF. Because a larger output capacitance reduces ripple,

a value of 44 µF was chosen given additional testing.

Cout =
2∆Iout
fsw ∗ Vout

(2)

To determine a value for the feed-forward capacitor, Cf , the crossover frequency is first calculated

using Eq. (3). This results in a value of approximately 18 kHz which is then used in Eq. (4) to

4

calculate Cf . Using a value of 100 kΩ for R1, the minimum feed-forward capacitance value equates

to 88.6 pF. For the design, a value of 100 pF was chosen.

f0 =
3.95

Vout ∗ Cout
(3)

Cf =
1

2πf0

1

R1
(4)

For the inductance, a value of 15 µH was suggested for an output of 5V. Based on testing results,

a final value of 136 µH was chosen. Eqs. (1-4) were all given in the datasheet [1].

2.4 Ultrasonic Sensor Module

2.4.1 Ultrasonic Sensor Unit

Design

The two ultrasonic sensor units consists of transmitting and receiving sensors and the circuitry

that drives them. These sensors are fixed on the net post, angled towards the table so as to have

a detection range as specified in Fig. 2.

The principle of ultrasonic ranging is shown in Fig. 6. The transmitting sensor emits a sound wave

in the ultrasonic range and when this wave hits an object, it gets reflected back. This reflection

is picked up by the receiving sensor and the time difference between the sent and received pulse

is measured.Using Eq. (5), with speed of sound in dry air = 343m/s, we are able to compute the

distance to the object in range. The time is divided by 2 to account for forward and reverse wave

propagation.

distance =
time ∗ 343

2
m (5)

Figure 6: Ultrasonic Ranging[2]

5

In our design, the transmitter unit will emit a fixed number of square wave pulses using a LM555

timer circuit described in detail in transmitter section below. The frequency of these pulses will be

40 KHz which is in the ultrasonic range. For our implementation, we use differencing to determine

which sensor the ball bounced closer to. Both the sensors will transmit at the same time and are

placed on opposite ends of the table. From a high level standpoint, this problem comes down to

which sensor received the reflected signal first. If sensor 1 received the reflected pulse first, the ball

is closer to that side of the table.

A high level block diagram of the sensor module is shown in Fig. 7. The operation of the transmitter

and receiver is controlled by the ATmega Chip. The ATmega controller is connected to the reset

pin of the both the transmitter LM555 timers through Hex inverters and also accepts the amplified

input from the sensor receivers.

Figure 7: Sensor Unit Block Diagram

Transmitter Circuit

The complete transmitter circuit consists of the LM555 timing circuit with a MOSFET driver IC

for the transmitting sensor. The driver is necessary as the sensor is a large capacitive load. It also

includes the hex inverter IC, which is controlled by the ATmega328p IC and connected to the reset

pin of the LM555 timer. The reset pin of the LM555 timer is active low. This means that when

the input is low, the output of the timer is reset to 0V and does not transmit a pulse.The circuit

schematic and EAGLE board layout are shown in Figs 8 and 9 respectively.

6

Figure 8: Ultrasonic sensor transmitter circuit schematic

Figure 9: Ultrasonic sensor circuit PCB

The LM555 timer is being used in the astable mode where it acts as a multivibrator continuously

cycling between a high and low output value. This means that it will continuously transmit a

square wave pulse until it is reset. The frequency and time period of the waveform is calculated

by the equations below. We chose our R1, R2, and C to satisfy Eq. (6) to get a 40 kHz square

waveform in the ultrasonic frequency range. Based on commonly available capacitor and resistor

values, we chose R2=3.8 kΩ, R1=8.2k Ω, and C2= 1.8nF.

fc =
1.44 ∗ C
R2 + 2R1

where fc is the oscillation frequency (6)

The time period of the output square wave pulse is calculated by Eqs. (7-9) where th is the time

for which the pulse is high and tl the time which the pulse is low. Together, they add up to give

the time period of the waveform with a duty cycle of 59.8%.

7

th = 0.693 ∗ (R2 +R1) ∗ C (7)

th = 0.693 ∗R2 ∗ C (8)

T = th + tl = 0.0249ms (9)

Lastly, the output of the LM555 module is fed into a MOSFET gate driver which drives the large

capacitive load which is the sensor.

Timing Diagram

The timing diagram for our implementation is shown in Fig. 10. For our design we chose to send 4

pulses for ease of detection. This equates to a transmit time of 100µs. The reset time is determined

by the furthest distance the sensor can “see”. For example, if the ball is at the farthest corner

of the table from the sensor diagonally 6.7ft away, a wave reflected from that ball will reach the

receiver in 11.9 ms at room temperature. We add a buffer of 3 feet to this distance as the player

stands within that range and his/her movements could also reflect back to the sensor. Therefore,

our total distance of concern is 9.7 feet, and the corresponding time between transmit and receive

for that distance is 17.2 ms at room temperature. Therefore, to remove delayed reflections,we set

our reset time to 17.2 ms.

Figure 10: Timing Diagram [3]

Receiver Circuit

The receiver circuit consists of the receiver sensor and an amplifier. The amplifier is set up with an

operational amplifier in feedback to achieve a specified gain. The desired gain will be determined

by observing the strength of the received signal from the ultrasonic sensor and comparing it to

the op-amp′s saturation voltage (5V). To implement the amplifier with the op-amp, we needed to

compute the resistor values for R1 and R2 For the amplifier design, the gain G can be computed

as shown in Eq. 10.

G = 1 +
R1

R2
(10)

8

This circuit schematic and EAGLE PCB layout is shown in Fig. 11. The resistor values are specified

for a gain of 100 and can be easily changed for a different gain if needed.

Figure 11: Receiver Circuit (left) and EAGLE Board schematic(right)

2.4.2 ATmega Microcontroller

Because a complex microcontroller is not necessary, the ATmega328p is used in the ultrasonic

sensor module at 16MHz. The ATmega continuously receives time delay readings via digital pins

from both ultrasonic sensors. It then analyzes the information to determine the distance of the

ball from each sensor. These distance readings are then compared to detect which sensor the ball

bounced closer to. This information is sent to the Bluetooth transmitter via the TX pin. Fig. 12

shows the circuit schematic for the microcontroller [4].

Figure 12: ATmega circuit schematic

The ATmega is also used to provide a trigger to the reset pin of the LM555 timer. This is done

by continuously outputting a “LOW” signal for 100 µs followed by a “HIGH” signal for 17.2 ms

(code found in Appendix B). This allows the timer to produce a 4 pulse square wave with a 17.2

ms delay before the next set of pulses are sent.

9

2.4.3 Bluetooth Transmitter

The HC-05 is used as the Bluetooth transmitter. Once the comparison is made in the ATmega, the

Bluetooth module sends this result to the Raspberry Pi. The circuit schematic for the Bluetooth

transmitter can be seen in Fig. 13. A voltage divider is used to lower the voltage to 3.3V as

required by the RX pin of the HC-05.

Figure 13: HC-05 circuit schematic

2.5 Camera Module

2.5.1 Raspberry Pi Microcontroller

The Raspberry Pi microcontroller is used to process video feed from the camera. Using OpenCV,

the Raspberry Pi searches each frame for colors within a certain pre-specified range corresponding

to the ball or table. This is converted into a binary image file, with “1” representing pixels with

value inside the aforementioned range, and “0” representing pixels with value outside the range.

This was performed for two color ranges corresponding to the ball and the table. A sample of the

original and binary images can be seen in Figure 14. Once this comparison has been performed,

the Raspberry Pi determines the largest area of “1”s and calls this the object of interest. [5]

Figure 14: A single frame from the camera (right) and generated binary image for the ball (left)

In the case of the ball the object must be a circle, and in the case of the table the object must

10

be a rectangle. Using the locations of the center of the ball and top of the table, the Raspberry

Pi can determine the height of the ball above the table. Once within a certain threshold height

of the table, the Raspberry Pi will read the appropriate value from the sensor readings (sent via

bluetooth) to make a determination of whether the serve was “in” or “out”. A flowchart for the

described software can be seen in Fig. 15. The implemented code can be seen in the Appendix C.

Figure 15: Software flowchart

2.5.2 Camera

The camera module used to capture the video of the ball bouncing was specified to be capable

of operating with resolution 640x480 at up to 90 frames per second. The camera is situated near

the umpire′s table at the same height as the playing table. This allows the camera to observe the

ball as it approaches the table, bounces, and leaves the table. To determine an appropriate frame

rate for the camera, we performed preliminary testing using a GoPro camera, which operates at 30

frames per second. The GoPro camera was able to capture frames showing the descent, bounce,

and ascent of the ball. This confirmed that, with a higher frame rate camera, the selected camera

would be able to detect the bounce of the ball as desired, and would also show more frames close

to the time when the ball contacts the table.

2.6 Output Display

The initial implementation of the output LED display board was with a finite state machine built

in hardware. The inputs are any valid sensor reading when the ball contacts the table, regardless

11

of whether or not the bounce was a serve. As shown in Fig. 16, the state machine would transition

on the input it receives (on the serve), and holds its output until the button is pressed to reset it.

Figure 16: Output display finite state machine

3 Design Verification

3.1 Power Supply

3.1.1 Battery

As table tennis matches last at most 45 minutes, the battery was tested to ensure that the buck

converter could be powered for the whole match using a single 9V battery. To verify this require-

ment, a 9V battery was connected as the input voltage to the buck converter. A load representing

the ultrasonic sensor module was placed as the output of the buck converter. Results were recorded

for the input voltage, output voltage, and output voltage ripple. Data for the test can be seen in

Table 2. According to the results, the battery voltage drops approximately 0.5V over the time

frame. It can be noted that the starting voltage of the battery is 8.7V due to prior testing.

Table 2: Battery voltage over 45 minutes

Minutes Vdc,battery VDC,load Vp−p,load

0 8.7 V 5.03 V 40 mV

5 8.6 V 5.03 V 42 mV

10 8.5 V 5.03 V 59 mV

15 8.5 V 5.03 V 54 mV

20 8.4 V 5.03 V 40 mV

25 8.4 V 5.03 V 54 mV

30 8.3 V 5.03 V 31 mV

35 8.3 V 5.03 V 67 mV

40 8.2 V 5.03 V 33 mV

45 8.2 V 5.03 V 48 mV

12

3.1.2 Power Converter

To be viable in the design, the buck converter was tested to ensure it could supply 5V ±5% and a

current of at most 70 mA. The input voltage of 9V was used from the power supply, and a load of

75 Ω was placed as the load. The voltage across the output is approximately 5.03V as seen by Fig.

17. Using this voltage and the resistance value of 75 Ω, an output current of 67.1 mA is calculated

using Eq. (11).

Figure 17: Buck converter output voltage

I =
V

R
(11)

3.2 Ultrasonic Sensor Module

3.2.1 Ultrasonic Sensors

We assembled the LM555 timing circuit on a breadboard with the LM555 chip and the required

resistor and capacitor values. The output of this lab test is shown on the oscilloscope in Fig. 18.

The frequency is 40.65 kHz, and the time period is 0.02496ms which is only slightly different than

the calculated value. This was expected due to tolerance issues with passive components. A 10%

tolerance of R1, R2 and C, the frequency will fluctuate from 33.97 kHz to 49.38 kHz. This is not an

issue as these frequencies are still in the ultrasonic range and will travel at the speed of sound. The

spikes seen in the graph are due to capacitive coupling which occurs in breadboard connections.

This will not occur when the circuit is implemented in a PCB.

13

Figure 18: Tested waveform of assembled LM555 timing circuit

We chose the UT-1240K-TT-R[6] and the UT-1240K-TT-R[7] transmitter and receiver sensors, and

the MAX5055 Dual MOSFET DRIVER because of its compactness and fast switching speed[8].

The complete assembled transmitter circuit and the waveform generated (without amplification)

at the output of the receiver sensor is shown in Figure 19.

Figure 19: Assembled Transmitter Circuit (left) and output at reciever sensor(right)

In the setup displayed in Figure 19, we placed the sensors end to end to test their functionality.

The waveform received on the receiving sensor is also displayed to the right of Figure 19. It is

inverted compared to the desired waveform as was specified in Fig. 10. This is due to the fact that

the MAX5055 is an inverting MOSFET Driver[8]. To correct this, we would invert the signal at

the output of the LM555 timer, before it is fed into the Driver.

Another aspect related to the waveform is that the amplitude of the received signal is about 10mV

even when the sensors are facing each other. This amplitude is very low and and would not be

14

detectable by the ATmega. A possible solution to this problem is using multi-stage amplifier, the

gain of which will be decided by the lowest possible valid reflection.

To display proof of concept, we used the Arduino ping sensors, the HC - SR04 which have a sensing

range of 2cm-4m and accuracy of 3mm [9]. This was good for our implementation as the center

line on a table tennis table is 3mm wide. So, to accurately determine the location of the ball, we

would need to make sure that our own sensor circuit achieved that accuracy of upto 3mm. The

code used to run these ping sensors is included in Appendix A.

The Integration of the ping sensors with the table is shown in Fig.20. Placement of the sensors was

critical as they have to be equal distance form a center point on the table and have to be angled

the same way to get the most accurate results. Through testing with these ping sensors we were

able to read distance values of the ball and determine which side of the table the ball bounced.

Figure 20: Integration of ping sensor with the system

3.2.2 ATmega Microcontroller

Due to time constraints and a focus on the other modules, the ATmega board microcontroller was

not implemented. Components whose functionality depends on the ATmega were connected to an

Arduino Uno. The Arduino Uno can provide as the proof-of-concept of the ATmega board.

3.2.3 Bluetooth Transmitter

Because information between the ultrasonic sensor module and Raspberry Pi are located approx-

imately 12 ft. away from each other, the Bluetooth transmitter was tested accordingly. After

connecting the HC-05 to an Arduino similarly to Fig. 13, the device was paired with a laptop.

Keeping the laptop at least 12 ft. away from the HC-05, data was then transmitted and observed.

Fig. 21 displays the received data from the Bluetooth transmitter which corresponds to the closer

sensor.

15

Figure 21: Bluetooth transmitted data 12 feet away

3.3 Camera Module

3.3.1 Raspberry Pi Microcontroller

An essential aspect of the Raspberry Pi block is the ability to track the ball and the top of the

table. Both objects are reliably able to be tracked. For simplicity of calibration, we attached pink

paper to the side of our table. The results of this tracking can be seen in Fig. 22. It can be seen

that there is a yellow circle surrounding the ball, with a red dot indicating its center. There is also

a blue marker at the left end of the pink part of the table indicating the level of the table. Using

the maximum y-position gives us the height of the table.

Figure 22: Ball detection and tracking

16

Though the tracking works as desired, the frame rate of the video was about 10 frames per second,

which is much less than the desired 90 frames per second. Additionally, in order to complete

implementation of our design, Bluetooth receiving would need to be integrated into the software.

3.3.2 Camera

The camera did not meet the desired specifications for the project. The frame rate was tested by

having the software count the number of analyzed frames while running for 30 seconds, and print

on exiting. Even with minimal additional processing, the camera displayed images with maximum

frame rate of about 55 frames per second. Upon integration with the computer vision code, the

camera displays images with frame rate of about 10 frames per second.

3.4 Output Display

The verification of the LED board was quite simple. A GPIO pin is set high to indicate an “in”

reading, and the green LED turned on. Another GPIO pin is set high to indicate an “out” reading,

and the red LED turned on. The button is connected to a third GPIO pin. However, the reading

of the input was not yet functional by the time of the demo.

The original board′s with the hardware logic did not function as desired, and debugging yielded no

results. Therefore we decided to implement this in software instead and focus on the more critical

aspects of the project.

17

4 Cost

4.1 Parts

Table 3: Parts Costs

Part Manufacturer/Distributor Unit Cost ($) Quantity Total ($)

HC-05 DSD Tech 7.99 1 7.99

TPS54202 TI 2.04 1 2.04

ATmega328p Atmel 2.14 1 2.14

Dip Socket Digikey 0.33 1 0.33

Camera Mount Scorpi 12.95 1 12.95

Ultrasonic Transmitter Digikey 4.95 2 9.90

Ultrasonic Receiver Digikey 4.95 2 9.90

Resistor 8.2K 0402 Digikey 0.02 1 0.02

Resistor 3.6K 0402 Digikey 0.02 1 0.02

Capacitor 10000pF 0402 Digikey 0.01 1 0.01

Capacitor 1800pF 0402 Digikey 0.01 1 0.01

MAX5055BASA Maxim Integrated 9.31 2 18.62

Capacitora 0.1uF Digikey 0.13 1 0.13

Misc. Ics ECE Store 6.61 1 6.61

9V Connector ECE Store 0.25 1 0.25

9V Battery ECE Store 1.34 1 1.34

Mount Supplies Lowe′s 17.71 1 17.71

Camera LoveRPi 21.99 1 21.99

Raspberry Pi Adafruit 47.09 1 47.09

LED Digikey 3.23 1 3.23

Total 162.28

4.2 Labor

Table 4: Labor Costs

Name Rate ($/hr) Hours Total ($)

Shraddha 30 250 7,500

Katelyn 30 250 7,500

Vishesh 30 250 7,500

Total 22,500

Grand Total 22,662.28

18

5 Conclusion

5.1 Accomplishments

We were able to accomplish much in our design this semester. Although our design was not fully

integrated, we were able to show functionality of most of the modules throughout the semester.

Our power supply was fully functional and met voltage and current requirements. By using the

off-the-shelf sensors, it could be determined which side of the line the table tennis ball bounced.

This was a big step in our design as it helped prove that ultrasonic sensors were a viable option. It

showed us that if we could adequately amplify the transmitted pulses we received in our designed

ultrasonic sensor circuit, our sensors could be a substitute for the off-the-shelf sensors. Another big

accomplishment in our project was the ability to track both the ball and table as this was one of

the main components in our design.

5.2 Uncertainties

There are a few issues with the current state of the system that may affect the intended purpose

of the design. The main uncertainty is with the ultrasonic sensors. Because we were unable to

complete the receiver circuit, it is hard to determine the accuracy of the ultrasonic sensors. To

confirm that the sensors would be accurate enough for our intended use, experiments would need

to be conducted. Another uncertainty with the system is whether the frame rate of the camera

could be increased adequately. Although parallel programming is the option that would need to be

explored, we cannot say that it would be a significant enough increase.

5.3 Ethical and Safety Considerations

Design of the table tennis detection system required the considerations of several ethical and safety

issues. The following statements from the IEEE Code of Ethics [10] were relevant in the design of

the system.

IEEE Code of Ethics #1 - “to accept responsibility in making decisions consistent with the safety,

health, and welfare of the public, and to disclose promptly factors that might endanger the public

or the environment”

It is important that the design is as safe as possible for the end user. This included minimizing the

risk of overheating components, determining ways to fixate units to their predetermined location,

and stating any possible safety hazards. Components were chosen keeping voltage and current

limits in consideration. By doing so, the risk of components combusting, which could result in

harm to anyone nearby as well as the equipment, is reduced. Another concern in the safety of the

user is the risk of objects acting as projectiles if hit. To minimize this concern, components are

thoroughly secured at their locations. Lastly, there is also potential safety concerns with the use of

the lithium-ion rechargeable battery including both chemical and electrical hazards. Lithium-ion

batteries consist of lithium for the anode as well as a material for the cathode which is usually

19

nickel or manganese and cobalt [11]. Although the battery should not release any chemicals, there

is the potential risk of leakage. This could be due to corrosion or damage to the battery. Also, there

is a possibility that the battery may overheat and/or combust if it is overcharged. The increase in

temperature may cause instability in the battery.

IEEE Code of Ethics #3 - “to be honest and realistic in stating claims or estimates based on

available data”

It must be stated that our system is likely not 100% accurate. Because the system is not manufac-

tured, there exists the possibility of error in the accuracy. Also, the design should not be altered

in any way. Changes may affect accuracy if not recalibrated.

5.4 Future Work

One of the most important improvements needed is to improve the frame rate of the Raspberry

Pi camera. It was determined that the primary cause of this delay between frames is the the time

taken by the computation needed for tracking the ball and table. This can be dramatically sped

up by utilizing the onboard GPU and parallelizing the program. This process would require not

only parallelizing the code we created but also the underlying libraries used providing many-fold

improvement on runtime.

Although it was proven that the HC-05 had the ability to transmit data the appropriate distance for

the design, communication was not established between the ATmega and Raspberry Pi. The next

step for complete functionality of the Bluetooth transmitter is to set up a Bluetooth connection

between the HC-05 and Raspberry Pi. This requires launching the Raspberry Pi Bluetooth tool

and pairing the device manually [12]. Once paired, the HC-05 will be able to transmit data to the

Raspberry Pi.

Adding the functionality of the button is the last step towards completing the LED board. This

provides the feedback back to the Raspberry Pi that the next point is about to start.

Finally, this unit could be considered the first step towards an automated score-keeping or umpiring

system. Additional systems that would need to be designed and implemented for this include:

score-tracking, general point detection (not specific to serves), serve legality detection, interference

detection (i.e. loose balls entering the field of play), and net service detection.

20

References

[1] “TPS54202 4.5-V to 28-V Input, 2-A Output, EMI Friendly Synchronous Step Down

Converter,” Datasheet, April 2016. [Online]. Available: http://www.ti.com/lit/ds/

symlink/tps54202.pdf

[2] “Ultrasonic Sensor HC-SR04 and Arduino Tutorial,” Web page, accessed May 2017. [Online].

Available: http://howtomechatronics.com/tutorials/arduino/ultrasonic-sensor-hc-sr04/

[3] “Timing Diagram Generator,” Web page, accessed May 2017. [Online]. Available:

http://wavedrom.com/editor.html

[4] “From Arduino to a Microcontroller on a Breadboard,” Web page, accessed April 2017.

[Online]. Available: https://www.arduino.cc/en/Tutorial/ArduinoToBreadboard

[5] “Ball Tracking with OpenCV,” Web page, accessed April 2017. [Online]. Available:

http://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/

[6] “Ultrasonic transmitter 30vrms, ut-1240k-tt-r,” Datasheet, April 2016. [Online]. Avail-

able: http://media.digikey.com/pdf/Data%20Sheets/Projects%20Unlimited%20PDFs/

UT-1240K-TTR.pdf

[7] “Pui audio, inc, ultrasonic receiver 30vrms, ut-1240k-tt-r,” Datasheet, April 2016. [Online].

Available: http://www.puiaudio.com/pdf/UR-1240K-TT-R.pdf

[8] “4a, 20ns, dual mosfet drivers,” Datasheet, April 2016. [Online]. Available: https:

//datasheets.maximintegrated.com/en/ds/MAX5054-MAX5057.pdf

[9] “Ultrasonic ranging module hc - sr04,” Datasheet, April 2016. [Online]. Available:

https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf

[10] “IEEE Code of Ethics,” Web page, accessed May 2017. [Online]. Available: http:

//www.ieee.org/about/corporate/governance/p7-8.html

[11] R. aisbl, “Safety of Lithium-Ion Batteries,” The European Association for Advanced Recharge-

able BAtteries, Brussels, Belgium, PDF, June 213.

[12] “Everything You Need to Set Up Bluetooth on the Raspberry Pi 3,”

Web page, accessed April 2017. [Online]. Available: http://lifehacker.com/

everything-you-need-to-set-up-bluetooth-on-the-raspberr-1768482065

[13] “NewPing Library for Arduino,” Web page, accessed April 2017. [Online]. Available:

https://bitbucket.org/teckel12/arduino-new-ping/wiki/Home

[14] “Ball Tracking with OpenCV,” Web page, accessed April 2017. [Online]. Available:

http://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/

[15] “Range-Detector,” Web page, accessed April 2017. [Online]. Available: https://github.com/

jrosebr1/imutils/blob/master/bin/range-detector

21

http://www.ti.com/lit/ds/symlink/tps54202.pdf
http://www.ti.com/lit/ds/symlink/tps54202.pdf
http://howtomechatronics.com/tutorials/arduino/ultrasonic-sensor-hc-sr04/
http://wavedrom.com/editor.html
https://www.arduino.cc/en/Tutorial/ArduinoToBreadboard
http://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/
http://media.digikey.com/pdf/Data%20Sheets/Projects%20Unlimited%20PDFs/UT-1240K-TTR. pdf
http://media.digikey.com/pdf/Data%20Sheets/Projects%20Unlimited%20PDFs/UT-1240K-TTR. pdf
http://www.puiaudio.com/pdf/UR-1240K-TT-R.pdf
https://datasheets.maximintegrated.com/en/ds/MAX5054-MAX5057.pdf
https://datasheets.maximintegrated.com/en/ds/MAX5054-MAX5057.pdf
https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf
http://www.ieee.org/about/corporate/governance/p7-8.html
http://www.ieee.org/about/corporate/governance/p7-8.html
http://lifehacker.com/everything-you-need-to-set-up-bluetooth-on-the-raspberr-1768482065
http://lifehacker.com/everything-you-need-to-set-up-bluetooth-on-the-raspberr-1768482065
https://bitbucket.org/teckel12/arduino-new-ping/wiki/Home
http://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/
https://github.com/jrosebr1/imutils/blob/master/bin/range-detector
https://github.com/jrosebr1/imutils/blob/master/bin/range-detector

Appendix A ATmega Ping Sensor Code

based on code from [13]

#include <NewPing.h>

#define SONAR_NUM 2 // Number of sensors.

#define MAX_DISTANCE 100// Maximum distance (in cm) to ping.

NewPing sonar[SONAR_NUM] = { // Sensor object array.

NewPing(9, 8, MAX_DISTANCE), // Each sensor\textquotesingles trigger pin, echo pin,

and max distance to ping.

NewPing(11, 10, MAX_DISTANCE),

};

float storedValue[2];

int closer;

void setup() {

Serial.begin(9600);

}

void loop() {

for (uint8_t i = 0; i < SONAR_NUM; i++) { // Loop through each sensor and display results.

Serial.print(i);

Serial.print(" = ");

delayMicroseconds(1);

if (i == 1) {

if ((sonar[i].ping() == 0)) {

storedValue[i] = sonar[i].ping()*0.034/2;

}

else {

storedValue[i] = (sonar[i].ping()+1)*0.034/2;

}

//Serial.print(storedValue[i]/12/2.54);

//Serial.println();

}

else {

storedValue[i] = sonar[i].ping()*0.034/2;

//Serial.print(storedValue[i]/12/2.54);

//Serial.println();

22

}

for (uint8_t i = 0; i < SONAR_NUM; i++) {

if ((storedValue[i] > 49) && (storedValue[i] < 58))

//1 inches old val. 53.3, 58.4,oldval 50, previous 55

//if ((storedValue[i] > 66 && storedValue[i] < 71)) //1.5 inches

//if ((storedValue[i] > 78 && storedValue[i] < 81)) //2 inches

//if ((storedValue[i] > 94 && storedValue[i] < 99)) //3inches {

Serial.print(i);

Serial.print("=");

Serial.print(storedValue[i]/12/2.54);

Serial.print(" ");

Serial.println();

}

}

}

delay(17);

}

23

Appendix B ATmega LM555 Timer Code

int control555 = 11;

void setup() {

// put your setup code here, to run once:

pinMode(control555, OUTPUT);

}

void loop() {

// put your main code here, to run repeatedly:

// noInterrupts();

//digitalWrite(control555, HIGH);

digitalWrite(control555, LOW); // Put reset high so IC555 transmits

delayMicroseconds(100); // do this for 100 microseconds

digitalWrite(control555, HIGH); // Put reset to 0 so 555 turns off

delayMicroseconds(100); //17.2 milliseconds

}

24

Appendix C Raspberry Pi Blob Detection Code

based on code from [14]

import the necessary packages

from collections import deque

import numpy as np

import argparse

import imutils

import cv2

from picamera.array import PiRGBArray

from picamera import PiCamera

import time

initialize the camera and grab a reference to the raw camera capture

camera = PiCamera()

camera.resolution = (320,240)

image= PiRGBArray(camera, size=(320,240))

camera.framerate=40

print frame[1,1,1]

construct the argument parse and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-p", "--picamera",

help="Raspberry Pi camera ")

ap.add_argument("-b", "--buffer", type=int, default=64,

help="max buffer size")

args = vars(ap.parse_args())

allow the camera to warmup

time.sleep(0.1)

define the lower and upper boundaries of the "green"

ball in the HSV color space, then initialize the

list of tracked points

greenLower = (29, 86, 6)

greenUpper = (64, 255, 255)

greenLower = (0, 0, 174)

greenUpper = (255, 255, 255)

25

greenLower = (0, 28, 225)

greenUpper = (85, 255, 255)

pts = deque(maxlen=args["buffer"])

ctr=0

keep looping

while True:

grab the current frame

#(grabbed, frame) = camera.read()

camera.capture(image, format=\textquotesinglebgr\textquotesingle, use_video_port=True)

frame=image.array

cv2.imshow("Frame",frame)

cv2.waitKey(0)

if we are viewing a video and we did not grab a frame,

then we have reached the end of the video

#if args.get("PiCamera") and not grabbed:

#break

resize the frame, blur it, and convert it to the HSV

color space

#frame.truncate(600)

frame = imutils.resize(frame, width=300)

blurred = cv2.GaussianBlur(frame, (11, 11), 0)

hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

construct a mask for the color "green", then perform

a series of dilations and erosions to remove any small

blobs left in the mask

mask = cv2.inRange(hsv, greenLower, greenUpper)

mask = cv2.erode(mask, None, iterations=2)

mask = cv2.dilate(mask, None, iterations=2)

find contours in the mask and initialize the current

(x, y) center of the ball

cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)[-2]

center = None

only proceed if at least one contour was found

26

if len(cnts) > 0:

find the largest contour in the mask, then use

it to compute the minimum enclosing circle and

centroid

c = max(cnts, key=cv2.contourArea)

#print cnts

((x, y), radius) = cv2.minEnclosingCircle(c)

#print "radius = ", radius

M = cv2.moments(c)

center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))

only proceed if the radius meets a minimum size

if radius > 5:

draw the circle and centroid on the frame,

then update the list of tracked points

cv2.circle(frame, (int(x), int(y)), int(radius),

(0, 255, 255), 2)

cv2.circle(frame, center, 5, (0, 0, 255), -1)

update the points queue

pts.appendleft(center)

loop over the set of tracked points

for i in xrange(1, len(pts)):

if either of the tracked points are None, ignore

them

if pts[i - 1] is None or pts[i] is None:

continue

otherwise, compute the thickness of the line and

draw the connecting lines

thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)

cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)

show the frame to our screen

cv2.imshow("Frame", frame)

key = cv2.waitKey(1) & 0xFF

ctr = ctr+1

27

if the \textquotesingleq\textquotesingle key is pressed, stop the loop

if key == ord("q"):

print ctr

break

image.truncate(0)

cleanup the camera and close any open windows

camera.close()

cv2.destroyAllWindows()

28

Appendix D Raspberry Pi Range Detection

based on code from [15]

#!/usr/bin/env python

-*- coding: utf-8 -*-

USAGE: You need to specify a filter and "only one" image source

#

(python) range-detector --filter RGB --image /path/to/image.png

or

(python) range-detector --filter HSV --webcam

import cv2

import argparse

from operator import xor

from picamera import PiCamera

from picamera.array import PiRGBArray

def callback(value):

pass

def setup_trackbars(range_filter):

cv2.namedWindow("Trackbars", 0)

for i in ["MIN", "MAX"]:

v = 0 if i == "MIN" else 255

for j in range_filter:

cv2.createTrackbar("%s_%s" % (j, i), "Trackbars", v, 255, callback)

def get_arguments():

ap = argparse.ArgumentParser()

ap.add_argument(\textquotesingle-f\textquotesingle, \textquotesingle--filter\textquotesingle, required=True,

help=\textquotesingleRange filter. RGB or HSV\textquotesingle)

ap.add_argument("-p", "--picamera", required=True,

help="Raspberry Pi camera ")

29

args = vars(ap.parse_args())

def get_trackbar_values(range_filter):

values = []

for i in ["MIN", "MAX"]:

for j in range_filter:

v = cv2.getTrackbarPos("%s_%s" % (j, i), "Trackbars")

values.append(v)

return values

def main():

args = get_arguments()

range_filter = args[\textquotesinglefilter\textquotesingle].upper()

camera = PiCamera()

image= PiRGBArray(camera, size=(640, 480))

setup_trackbars(range_filter)

while True:

#if args[\textquotesinglewebcam\textquotesingle]:

if args[\textquotesinglepicamera\textquotesingle]:

#ret, image = camera.read()

camera.capture(image, format=\textquotesinglebgr\textquotesingle)

if not ret:

break

if range_filter == \textquotesingleRGB\textquotesingle:

frame_to_thresh = image.copy()

else:

frame_to_thresh = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

v1_min, v2_min, v3_min, v1_max, v2_max, v3_max = get_trackbar_values(range_filter)

30

thresh = cv2.inRange(frame_to_thresh, (v1_min, v2_min,

v3_min), (v1_max, v2_max, v3_max))

cv2.imshow("Original", image)

cv2.imshow("Thresh", thresh)

if cv2.waitKey(1) & 0xFF is ord(\textquotesingleq\textquotesingle):

break

if __name__ == \textquotesingle__main__\textquotesingle:

main()

31

Appendix E Requirement and Verification Table

Requirements Verification Pts.

Ultrasonic Sensors

LM555 astable multivibrator circuit 1. Connect microcontroller to LM555 to enable 2

should emit a frequency of 40 kHz reset pin to high (reset is active low). This will

±10%. generate a continuous square wave.

2. Connect output to oscilloscope.

3. Verify frequency is within 40 kHz ±10%.

Both sensors must be able to view the 1. Set ultrasonic sensors in place for design 7

3.5 feet of the middle line from the end specifications.

of the table closest to the player. 2. Connect sensors to oscilloscope.

3. Serve ball along middle line approximately 1 ft

from the net.

4. Verify sensors receive signal on oscilloscope.

5. Repeat step 4 for serves approximately 2 ft, 2.5

ft, 3 ft, 3.5 ft, 4ft, and 4.5 ft from net.

Ultrasonic receiving sensors must 1. Set ultrasonic sensors in place for design 5

detect reflected wave at a time delay specifications.

corresponding to the distance of the 2. Connect receiver sensor output to Arduino (for

ball from the sensor. time measurement).

3. Drop ball a specified distance away from

sensor.

4. Verify distance using microcontroller by

measuring time delay in received pulse.

ATmega Microcontroller

Must repeatedly send a low signal for 1. Connect microcontroller output pin to 1

100 us and a high signal for 17.2 ms oscilloscope.

2. Run reset signal code which should send a low

signal for 100 us and a high signal for 17.2 ms.

3. Verify signal is low for 100 µs and high for 17.2

ms.

32

Requirements Verification Pts.

Ultrasonic Sensors

Must be able to determine which 1. Start pulsing the LM555 timers using the 7

receiver acquired the reflected signal ATmega microcontroller

first. 2. Bounce ball close to sensor 1

3. Observe that ATmega interprets received 4

consecutive pulses in order to return that the

ball is closer to sensor 1

4. Bounce ball close to sensor 2

5. Observe that ATmega interprets received 4

consecutive pulses in order to return that the

ball is closer to sensor 2

Bluetooth Transmitter

Must be able to correctly send 1. Program bluetooth transmitter to send a loop 3

information with 99% accuracy from of bits of data representing which sensor

sensor to a bluetooth receiving device detected object first.

12 ft away. 2. Pair bluetooth transmitter with a bluetooth

receiver 12 ft away.

3. Verify correct information is sent.

Raspberry Pi

Must be able to receive 640x480p 1. Read input image from camera. 3

images at 90 fps from the camera 2. Store in local memory and increment a frame

module. counter

3. Output to computer

4. Repeat for 1 second

5. Observe continuous images on computer

5. Verify that frame counter reaches 90.

Must be able to send a correct signal to 1. Hard code a signal to transmit to the display. 1

the display to cause LED to light green 2. Observe if the correct LED is green for “in” and

for “in” and red for “out”. red for “out”.

Must distinguish the table tennis ball 1. Return the location of the bottom-most pixel of 7

from the non-white background and the ball

table. 2. Return dimensions of the ball (total number of

pixels)

3. Display the image on the screen.

4. Compare returned values with raw image

33

Requirements Verification Pts.

Must distinguish the level of the top of 1. Draw a line at the level of the top of the table 5

the table tennis table with 90% tennis table on top of the image.

accuracy. 2. Display the image to the screen.

3. Compare returned values with raw image

Output Display

The display must clearly show if ball is 1. Hard-wire input from the ARM 1

“in” or “out” for the play. microcontroller.

2. Check if LED displays green for “in” and red for

“out”.

The display must be reset after each 1. Trigger LED. 2

play. 2. Press button to manually reset LED.

3. Check if LED is off.

Battery

The 9V battery must be able to feed the 1. Connect battery to buck converter and 3

buck converter a minimum of 5V for at multimeter.

least 45 minutes. 2. Measure voltage every 5 minutes.

3. Verify the voltage never falls below 5V.

Buck Converter

Buck converter must output a voltage 1. Connect resistive load to buck converter. 3

of 5V with a ±5% voltage ripple and a 2. Supply converter with 9V.

minimum current of 70mA 3. Connect output to multimeter.

4. Verify voltage is 5V with a ±5% and current is

a minimum of 70mA.

Total Points 50

34

	Introduction
	Design
	System Block Diagram
	Physical Design
	Power Supply
	Battery
	Power Converter

	Ultrasonic Sensor Module
	Ultrasonic Sensor Unit
	ATmega Microcontroller
	Bluetooth Transmitter

	Camera Module
	Raspberry Pi Microcontroller
	Camera

	Output Display

	Design Verification
	Power Supply
	Battery
	Power Converter

	Ultrasonic Sensor Module
	Ultrasonic Sensors
	ATmega Microcontroller
	Bluetooth Transmitter

	Camera Module
	Raspberry Pi Microcontroller
	Camera

	Output Display

	Cost
	Parts
	Labor

	Conclusion
	Accomplishments
	Uncertainties
	Ethical and Safety Considerations
	Future Work

	Reference
	ATmega Ping Sensor Code
	ATmega LM555 Timer Code
	Raspberry Pi Blob Detection Code
	Raspberry Pi Range Detection
	Requirement and Verification Table

