
Self-standing Monopod

Xin Chen
Diyu Yang

Jianan Gao

TA: Luke
ECE 445

February 2017

Abstraction

This report describe our journey of building a self-standing monopod over the whole semester.
To accomplish this goal, we explored the property of control system by programming in mi-
crocontroller to work together with our motor-propeller system. Although this project is not
working as we expected, we could still see how much efforts we devoted into this project.

1

Contents

1 Introduction 4
1.1 Problem Statement . 4
1.2 Objectives . 4

1.2.1 Goals . 4
1.2.2 Functions . 4
1.2.3 Benefits . 4
1.2.4 Features . 5

2 Design 6
2.1 Block diagram . 6
2.2 Block description . 7

2.2.1 Power supply . 7
2.2.2 Brushless motor . 7
2.2.3 Propeller . 7
2.2.4 Inertial measurement unit(IMU) . 7
2.2.5 Microcontroller . 7

2.3 Design . 8
2.3.1 Math model . 8
2.3.2 Microcontroller . 9
2.3.3 IMU . 10
2.3.4 Median Filter . 12
2.3.5 Brushless motor & Propeller system . 13
2.3.6 Control system . 13
2.3.7 Flow chart . 14

3 Design verification 15
3.1 Microcontroller . 15
3.2 IMU . 16
3.3 Control system . 16
3.4 Brushless motor & Propeller system . 16

4 Cost 18
4.1 Cost . 18

4.1.1 Labor . 18
4.1.2 Equipments . 18

2

5 Conculsion 19
5.1 Accomplishments . 19
5.2 Difficulties . 19
5.3 Safety &Ethics . 19
5.4 Future work . 20
5.5 Reference . 20

A Requirement and verification 21

B Arduino code 24

3

Chapter 1

Introduction

1.1 Problem Statement

When doing photography we usually needs tripods to stabilize our camera. However, the problem
with a tripod is that it’s heavy to carry, difficult to setup, and it does not have too many shooting
angles for the camera. Plus it requires a perfectly flat ground to use tripod, which is somewhat
inconvenient for photographers. Therefore, we want to design a self-standing mono-pod which is
robust and stable for photographers with the technique of PD control. We also get inspiration
from one youtube video to better design our project.[1]

1.2 Objectives

1.2.1 Goals

• The monopod is able to stand by itself when the control system is working.

• Weight is lighter than a tripod with same length.

• The monopod can be placed in most of the terrains.

• The monopod is able to withstand at least a weight of a camera on the top of the monopod.

1.2.2 Functions

• Balance at the vertical position when no external forces applied.

• Be able to go back to equilibrium position when constant external forces is less than 5N.

• Get back to equilibrium position within 5s when tapping force less than 7N is applied on the
monopod.

1.2.3 Benefits

• It has the ability to hold heavy weight camera.

• Users do not need to manually set the monopod to center point.

• Users do not need to worry about the monopod with a camera falling down in most of the
cases.

4

1.2.4 Features

• It will balance itself due to the technique of PD control.

• It can recover to original state when it senses any impulse from outside.

• The monopod is robust enough to withstand wind with speed less than 20 km/h.

5

Chapter 2

Design

2.1 Block diagram

Figure 2.1: Block diagram

6

2.2 Block description

2.2.1 Power supply

Provide 8V voltage and up to 3A current for our whole system.

2.2.2 Brushless motor

These motors function as actuators of our system. They take PWM input from the microcon-
troller and spin the propeller at desired speed.

2.2.3 Propeller

These two wheels are mechanical device to generate torque to pull the monopod to its equilibirum
point.

2.2.4 Inertial measurement unit(IMU)

We use IMU’s accelerometer as input to our control system. We use this data to calculate the
angle how much the monopod is away from vertical position.

2.2.5 Microcontroller

This works as a control unit that will take input from IMU and process the data, and output
PWM signal to our actuators.

7

2.3 Design

2.3.1 Math model

Figure 2.2: Math model

mp = 0.363kg Mass of monopod

mr = 0.02kg Mass of each propeller motor package

mc = 0.5kg Mass of the camera

lmax = 2m Maximum length of monopod

lmin = 2m Minimum length of monopod

Fr Force produced by one propeller

θp Distance from bottom to the center of mass of pendulum

lr Distance from bottom to the propeller

8

lc = l + 0.1m Distance from bottom to center of mass of camera

Rp = 0.15m Distance from propeller to the pod

Our PID control system takes pendulum angle θp as input, and output the force needed to
produce for each propeller in each direction.
Net Torque added onto the system:
τ = (mplp + 4mrlr + mclc)gsin(θp) - Fr Rp

τ = -L̇

Where L is the angular momentum of the pendulum-propeller system, and can be expressed
as follows:

L = J θ̇p

2.3.2 Microcontroller

We use a ATmega328p as our MCU. The advantage of this chip is that it allows for in-system
programming (ISP) and offers support for all of the digital pulse width modulation (PWM)
functionality that we required. This works as a control unit that will take input as output from
IMU and process to get the duty cycles the PWM signal need for motor to balance the monopod.
The schematics circuit design for our microcontroller is the following:

Figure 2.3: MCU schematics

9

In this schematic circuit, we designed one 5V output pin with the help of voltage regulator
which we use as power supply for our motor drivers. In addition to 5V pin, we have 4 PWM
outputs to manipulate spinning speed of motors.

The picture below is our PCB for microcontroller circuit. We have one 5V voltage regulator
that provide power of the microcontroller. We also have the atmega328p sitting in the middle of
the PCB on a socket(the piciture only shows the location of the chip.) The pins we use on this
PCB are 2 analog input pins for communicating with IMU, and 4 digital output pins for sending
PWM signal to motor drivers.

Figure 2.4: Pin assignment

2.3.3 IMU

The IMU we use is MMA8451 Triple-Axis Accelerometer 14-bit ADC. The reason we use this
mode is because is has three axis sensing and offers 10-bit precision output and it can process data
at a rate two times faster than nature frequency(from math model).This sensor communicates
over I2C so we can share it with many other sensors on the same two I2C pins. There’s an
address selection pin that we can have accelerometers share an I2C bus. We have the schematic
circuit for IMU is following:

10

Figure 2.5: IMU Schematics

Here is how we connect pins to out MCU: Connect Vin to the power supply, we use 5V.
Use the same voltage that the microcontroller logic is based off of. Connect GND to common
power/data ground, connect the SCL pin to the I2C clock SCL pin on our Arduino. On an
Atmega 328 based Arduino, this is A5. Connect the SDA pin to the I2C data SDA pin on your
Arduino. On an UNO 328 based Arduino, this is also known as A4.

Figure 2.6: IMU angle

We calculated the angle from raw output of IMU by the equation:

θ = sin−1(θp/G)

11

G is the gravity constant. This equation is used to calculate one direction angle, we need two
angles which are x and y directions.

2.3.4 Median Filter

Although our calculated angles from IMU inputs are both accurate and stable at stationary
positions, the motion of the monopod may still add noise into the system. Since the motion of
the monopod generates accelerations along all axis of IMU chip, and our angles are calculated
by the accelerations detected by IMU, our angles as a result, will be disturbed by the motion
of the monopod. Such disturbance can generate significant amount of noise. As a result, a
filter is needed to filter out the noise created by such motion. We chose median filter to do
such a job because such filter is quite effective filtering out outlier data points. The plot below
shows a simple experiment on the effect of median filter. During this experiment, we manually
oscillated the monopod in a +/-5 degree motion range. The blue curve is the IMU angle before
filtering, and the red curve is the IMU angle after filtering. We notice that the high frequency
oscillating motion generates significant amount of noise to the IMU angle, for the angle goes
from approximately -20 degrees to 20 degrees before filtering process. However, the range of the
angle goes back to a reasonable +/-5 degree range after the filtering process, which means that
our median filter does a pretty good job eliminating the outliers. From the appendix B arduino
code, it shows the way how we implemented it.

Figure 2.7: Median filter

In the following plot, we again compared the result of the data before and after the median
filter for a smooth trajectory. This time we noticed that the filterd data have similar trajectory
as the unfiltered data, which means that when the trajectory is smooth, that is to say there is
little noise created by the motion, our filter actually let the data pass through.

12

Figure 2.8: Median filter

2.3.5 Brushless motor & Propeller system

These motors function as actuators of our system. They are attached to propellers that generate
thrust when spinning to stabilize our monopod. The maximum rpm is 11500 rpm. It takes inputs
of three phase PWM signals. The reason we use brushless motors over brushed motors is that
it can provide more torque under the same power supply. It operates under voltage range from
7V to 11V. The radius for our propeller is 5.5cm. The motor and propeller system is mechanical
device that can generate torque to offset the acceleration caused by monopod gravity.

2.3.6 Control system

We programmed our control system in our microcontroller and implemented it with the help of
PD control. The reason we used PD(Proportional-Derivative) control is because PD controller
is enough for fast response controller since we don’t need the steady state error in our system to
be 0. The proportional part in our controller provides an instantaneous response to the control
error. This is useful for improving the response of a stable system but cannot control an unstable
system by itself. The derivative part provides a fast response, as opposed to the integral action,
but cannot accommodate constant errors. Furthermore, we tuned our kp, kd by experiment. In
this project, the ideal case we expect is that: rising time should less 20.8ms, steady state error
should be less than 10% of input signal and overshoot should be less than 5% of input signal.
The equation for PD control is following:

Output = kp ∗ (Θd −Θ(t)) + kd ∗ (Ωd − Ω(t))

13

2.3.7 Flow chart

Figure 2.9: IMU to control system

This is the bridge from IMU raw input to control system. As shown in the algorithm flow chart
above, we first read raw acceleration input from IMU, then used arcsine function to calculate
the two angles for each direction. We checked for Nan condition and then passed the two
angles into a median filter to eliminate the noise produced by the accelerations of the monopod
during the motion. For the derivatives terms, we took filtered angle values and did a first order
approximation on each angle. We then pass the approximated Ω values into a mean filter. Finally
we pass Theta and Ω values into the control system.

14

Chapter 3

Design verification

3.1 Microcontroller

In order to verify the functionality of microcontroller, we need to make sure that the following
pins output expected signals: 5V, ground, 4 PWM signals, A4 and A5. We set up our circuit,
connecting output pins to oscilloscope, we have the following outputs in figure 3.1.

Figure 3.1: Data analysis

While testing, we set our PWM signals to be analogewrite(30) which is about quarter of duty
cycle, the rising edge is the about quarter of the unit block, this means our four PWM ports are
working properly. We use digital multimeter to test the output of the pin. The output is also
5V, this means the pin is working properly.

15

3.2 IMU

To test functionalty of IMU, we connected our IMU to our microcontroller and we printed the
output from IMU in the series monitor in arduino software. We have our data analysis plot in
figure 3.2.

Figure 3.2: Data analysis

While testing, we obtained 10 samples for each angle, the bar on each angle is standard
deviation. We can see on the graph that the standard deviation at each angle is very small,
this means each sample is close to the average value and average value is close to real value.
Therefore, this IMU can accurately detect angle.

3.3 Control system

Unfortunately, we were not able to verify the rise time and steady state error requirements for
our control system. The main reason is that the rise time of the propeller-monopod system is
mainly due to the hardware delay: it takes a long time for a motor to spin to the speed requested
by PWM signal. So as a result, the rise time for the control system itself became less of an
issue compared to the long rise time created by the hardware. Also for the steady state error,
since our propeller-motor system failed to produce enough force to compensate the gravity of
the monopod, so we were never able to actually reach the steady state of the system.

3.4 Brushless motor & Propeller system

Our brushless motor and propeller system should have provide enough thrust to support the
falling gravity of monopod. Therefore, we tested the force generated by the system with the help
of a scale and a bench as following figure.

16

Figure 3.3: Testing motor

After testing the whole system, we had the data about PWM signal output and lifting force.
After analyzing these data, we have the following diagram:

Figure 3.4: Testing motor

The lifting force and PWM signal has a linear relationship. This ensures that we can approx-
imate lifting force by adjusting the PWM signal. This is important to our control system since
we only need to modify PWM signal to change the spinning speed.

17

Chapter 4

Cost

4.1 Cost

4.1.1 Labor

Employee Hourly rate Total hours Total cost

Xin Chen $50 150 7500

Diyu Yang $50 150 7500

Jianan Gao $50 150 7500

4.1.2 Equipments

Device quantity Model Total cost

IMU 1
SparkFun 9 DoF
Razor IMU M0

$50

Microcontroller 1 Netmega $25

Motor 2 uxcell motor $2

Wheel 2
Carbon Fiber Pro-
peller for Mini Elec-
tric Planes, 32mm

$8

Wires 40 supply center $40

total: 22585

18

Chapter 5

Conculsion

5.1 Accomplishments

• Correct acceleration reading from IMU.

• Correct angle interpretation of IMU output in microcontroller.

• Median filter to filter out the noise of acceleration output.

• Developed working circuit for microcontroller unit.

5.2 Difficulties

• Power supply
We did not manage to find any battery that is able to meet our requirement of having a
peak current of 3A. We do not have an viable solution except that trying harder to find a
lithium battery that meets our requirement.

• Delay in motor
The delay of sending PWM signal to motor and motor spinning to the desired speed is the
reason why we did not manage to get the monopod stand by itself. Potential solution is to
design other control method such as feed forward.

• Thrust of motor
The thrust of motor is not big enough to pull the monopod to its equilibrium point when
the monopod is 30 degree from vertical line even though the motors are spinning at its
maximum speed. One of the potential solution is to have more powerful motors.

5.3 Safety &Ethics

1.Our monopod use 4 propellers to generate torque. So one of the potential danger is that the
sharp edges of propellers can damage objects or injure a human if they are close to the propellers.
To be consistent with IEEE Code of Ethics #4[2]: “To accept responsibility in making decisions
consistent with the safety, health, and welfare of the public.” [1] We eliminate this danger by
creating a cover for each of the propeller that protect users get in touch with these propellers.

19

2.We take great care when soldering components on PCB and soldering wires. Fume extractor
is used all time to ensure clean air. We also wear safety googles every time we solder any
components. We make sure nothing flammable is close to our soldering iron when we solder any
components.

3.To be consistent with IEEE Code of Ethics #4: “IEEE Code of Ethics #4: “To accept
responsibility in making decisions consistent with the safety, health, and welfare of the public.”
We are honest about our design specification throughout the design process.

4.To be consistent with IEEE Code of Ethics #9: “to avoid injuring others, their property,
reputation, or employment by false or malicious action.” We set the rule that in our develop-
ment process; any personnel except the person holding the monopod should keep away from the
monopod at least 5 feet. The person holding the monopod should take precaution.

5.4 Future work

• Add additional feature. Hold camera on top of the monopod.

• Make the height changeable so that there are more shooting angles.

• Solve the motor system delay problem by using more responsive motor or using reaction wheel
instead of propellers. Make the monopod stand by itself.

5.5 Reference

20

21

Appendix A

Requirement and verification

Requirements Verifications

Micro-controller

• Input: signals from IMU outputs
that tells MC the acceleration.

• Output: signals to two motors that
can control spin speed.

• Requirements1: it must be able
to communicate with IMU and
motors simultaneously at speed
greater than 4mHz.

• Requirements2: it must be able to
work under 5V voltage and calcu-
late how fast the motor will spin
to generate torque to offset the ac-
celeration caused by monopod it-
self.

• Connect output to computer
monitor to check if the
micro-controller has cor-
rect output when monopod
has some acceleration.

• Provide input voltage for the
microcontroller and test if
it can run under the spe-
cific voltage.

• Check code for calculating the
torque for each motor to
ensure the functionality for
wheels.

30

IMU

• Input: power supply with 5V voltage

• Output: angular velocity, accelera-
tion.

• Requirement1: it should detect cor-
rect angular velocity and acceler-
ation with the 3-axis accelerome-
ter, 3-axis gyroscope, and 3-axis
magnetometer inside the circuit.

• Requirement2: it should report all
the data collected from experi-
ments.

• Check the circuit inside the
manual and eyebow the
correctness of the circuit.

• Connect the output to com-
puter monitor and check
if the output of angular
velocity, acceleration make
sense to us.

• Provide 5V voltage and test
the functionality of the
chip.

30

22

Motor 1 & 2

• Input: power supply and signal from
microcontroller.

• Output: motor spinning.

• Requirement: it will spin in the di-
rection we assign.

• Provide 5V power supply and
test if the motor can spin
in speed of 10400RPM

• Reverse the power source and
test if it can spin another
direction.

10

Wheel 1 & 2

• Since they’re mechanical devices, we
need to make sure it can work flu-
ently.

• Test the friction inside wheels
and find the maximum
torque it can generate.

10

Power supply

• This power supply is from lab func-
tion generator.

• Test if the function generator
can work. 10

23

Appendix B

Arduino code

#inc lude <Wire . h>
#inc lude<math . h>
#inc lude <Adafruit MMA8451 . h>
#inc lude <Adaf ru i t Sensor . h>
#inc lude <Servo . h>
#inc lude <F i l t e r s . h>

Servo ESC10 , ESC11 , ESC9 , ESC6 ; // Create as much as Servoob jec t you want . You can c o n t r o l l 2 or more Servos at the same time
Adafruit MMA8451 mma = Adafruit MMA8451 () ;

void setup () {
// put your setup code here , to run once :
ESC10 . attach (1 0) ; // attached to pin 10
ESC11 . attach (1 1) ; // attached to pin 11
ESC9 . attach (9) ;
ESC6 . attach (6) ;
S e r i a l . begin (9 6 0 0) ;
i f (! mma. begin ()) {

S e r i a l . p r i n t l n (” Couldnt s t a r t ”) ;
whi l e (1) ;

}
mma. setRange (MMA8451 RANGE 2 G) ;
S e r i a l . p r i n t (” Range = ”) ; S e r i a l . p r i n t (2 << mma. getRange ()) ;
S e r i a l . p r i n t l n (”G”) ;

}
i n t i n i t i a l = 1 ;

f l o a t theta1motor = 0 ; // Current angle , w i l l be c a l c u l a t e d v ia IMU measurement
f l o a t theta2motor = 0 ; // Current angle , w i l l be c a l c u l a t e d v ia IMU measurement

f l o a t Theta1 old = 0 ;
f l o a t Omega1 old1 = 0 ;
f l o a t Omega1 old2 = 0 ;

24

f l o a t Omega1 = 0 ; // Obtained by f i r s t order approximation

f l o a t Theta2 old = 0 ;
f l o a t Omega2 old1 = 0 ;
f l o a t Omega2 old2 = 0 ;
f l o a t Omega2 = 0 ;

f l o a t Ik1 = 0 ; // i n t e g r a l part i n t e g r a l (e (t) dt) from 0 to cur rent
f l o a t de l t IK1 ; // e (t) dt part

// Des t ina t i on v a r i a b l e s . These should always be 0 accord ing to our purpose
f l o a t theta1d = 0 ;
f l o a t d theta1d = 0 ;

f l o a t theta2d = 0 ;
f l o a t d theta2d = 0 ;

f l o a t G = 9 . 8 1 ;
f l o a t de l t T = 0 ; // time between two samples . How do we get t h i s va l ??

i n t tau1 = 0 ;
i n t tau2 = 0 ; // output torque
i n t tau3 = 0 ;
i n t tau4 = 0 ;
f l o a t tempval = 0 ;
i n t value1 = 0 ; //PWM s i g n a l
i n t value2 = 0 ;
i n t value3 = 0 ;
i n t value4 = 0 ;
unsigned long CurrentTime = 0 ;
unsigned long StartTime = 0 ;
f l o a t theta1rad = 0 ;
f l o a t theta2rad = 0 ;

//PID params
f l o a t Kpy = 20 ;
f l o a t Kdy = 3 ;

f l o a t Kpx = 20 ;
f l o a t Kdx = 3 ;

f l o a t Kp1 = Kpy ;
f l o a t Kd1 = Kdy ;
f l o a t Ki1 = 0 ;

f l o a t Kp2 = −Kpy ;

25

f l o a t Kd2 = −Kdy ;
f l o a t Ki2 = 0 ;

f l o a t Kp3 = Kpx ;
f l o a t Kd3 = Kdx ;
f l o a t Ki3 = 0 ;

f l o a t Kp4 = −Kpx ;
f l o a t Kd4 = −Kdx ;
f l o a t Ki4 = 0 ;

f l o a t theta1 [4] = {0 , 0 , 0 , 0} ;
f l o a t theta2 [4] = {0 , 0 , 0 , 0} ;
i n t compensation10 = 1160 ;
i n t compensation11 = 1030 ;
i n t compensation9 = 1516 ;
i n t compensation6 = 1595 ;
i n t PWMmax = 500 ;
i n t PWMmin = 0 ;

f l o a t f r e q = 15 ;
f l o a t gy , gx ;
void loop () {

// F i r s t send an i n i t i a l PWM s i g n a l to motor
i f (i n i t i a l)
{

delay (1 5 0 0) ;
ESC10 . wr i teMicroseconds (1 0 0 0) ;
ESC11 . wr i teMicroseconds (1 0 0 0) ;
ESC9 . wr i teMicroseconds (1 0 0 0) ;
ESC6 . wr i teMicroseconds (1 0 0 0) ;
i n i t i a l = 0 ;
de lay (1 0 0 0) ;

}

// F i r s t l e t ’ s get output from IMU and c a l c u l a t e motor ang l e s
StartTime = CurrentTime ; // s t a r t t i m e i s prev ious time
CurrentTime = m i l l i s () ;
de l t T = (CurrentTime − StartTime) ∗ 0 . 0 0 1 ;
// s t o r e the cur rent time r i g h t be f o r e read ing mma va lue s
mma. read () ;
/∗ Get a new senso r event ∗/
s e n s o r s e v e n t t event ;
mma. getEvent(&event) ;
// c a l c u l a t i n g ang l e s
// F i r s t l e t ’ s LPF the a c c e l e r a t i o n
gx = event . a c c e l e r a t i o n . x ;
gy = event . a c c e l e r a t i o n . y ;
tempval = as in (gy/G) ;

26

i f (! i snan (tempval))
{

theta1rad = tempval ;
theta1motor = theta1rad ∗180/M PI ;

}
tempval = as in (gx/G) ;
i f (! i snan (tempval))
{

theta2rad = tempval ;
theta2motor = theta2rad ∗180/M PI ;

}
S e r i a l . p r i n t (” Theta be f o r e LPF = ”) ; S e r i a l . p r i n t (”\ t ”) ; S e r i a l . p r i n t (theta1motor) ; S e r i a l . p r i n t (theta2motor) ; S e r i a l . p r i n t (”\ t ”) ; S e r i a l . p r i n t l n () ;
//Apply a LPF f i l t e r d i r e c t l y to a c c e l e r a t i o n
/∗gy = (2∗ de l t T ∗ f r e q +1)∗gy + (2∗ de l t T ∗ f r eq −1)∗ gy o ld ;
gy o ld = gy ;
tempval = as in (gy/G) ;
i f (! i snan (tempval))
{

theta1rad = tempval ;
theta1motor = theta1rad ∗180/M PI ;

}
∗/

// F i r s t push thetamotor in to the queue
push (theta1 , theta1motor) ;
i f (checkzero (theta1))
// i f no z e ro s in array , then apply median f i l t e r and update thetamotor va lue
{

theta1motor = s o r t (theta1) ;
}
push (theta2 , theta2motor) ;
i f (checkzero (theta2))
// i f no z e ro s in array , then apply median f i l t e r and update thetamotor va lue
{

theta2motor = s o r t (theta2) ;
}
S e r i a l . p r i n t (” Theta a f t e r LPF = ”) ; S e r i a l . p r i n t (theta1motor) ; S e r i a l . p r i n t (”\ t ”) ; S e r i a l . p r i n t (theta2motor) ; S e r i a l . p r i n t (”\ t ”) ; S e r i a l . p r i n t l n () ;

// tau1 = 0 ; // r e s e t output torque to be 0

// f i r s t order approximation f o r Omega
Omega1 = (theta1motor − Theta1 old)/ de l t T ;
Omega1 = (Omega1 + Omega1 old1 + Omega1 old2) / 3 . 0 ;
Theta1 old = theta1motor ;
Omega1 old2 = Omega1 old1 ;
Omega1 old1 = Omega1 ;

Omega2 = (theta2motor − Theta2 old)/ de l t T ;
Omega2 = (Omega2 + Omega2 old1 + Omega2 old2) / 3 . 0 ;
Theta2 old = theta2motor ;

27

Omega2 old2 = Omega2 old1 ;
Omega2 old1 = Omega2 ;

// putt ing a l l p i e c e s toge the r
tau1 = Kp1∗(theta1d−theta1motor)+Kd1∗(d theta1d−Omega1) ;

tau2 = Kp2∗(theta1d−theta1motor)+Kd2∗(d theta1d−Omega1) ;
tau3 = Kp3∗(theta2d−theta2motor)+Kd3∗(d theta2d−Omega2) ;
tau4 = Kp4∗(theta2d−theta2motor)+Kd4∗(d theta2d−Omega2) ;

// tau1 = tau1 + 5 ;
// Boundary Check . i f the torque i s too big then sa tu ra t e the i n t e g r a l

/∗
i f (f abs (tau1) < PWMmax)

Ik1 = Ik1+de l t IK1 ;// normal c a l c u l a t i o n . No need to sa tu ra t e
e l s e

tau1 = tau1−Ki1∗ de l t IK1 ;
∗/

// S e r i a l . p r i n t (”Omega1 : \ t ”) ; S e r i a l . p r i n t (Omega1) ; S e r i a l . p r i n t l n (”\ t ”) ;
// raw PWM values without boundary check
value1 = tau1 + compensation10 ;
value2 = tau2 + compensation11 ;
value3 = tau3 + compensation6 ; // output to pin 6
value4 = tau4 + compensation9 ; // output to pin 9
// S e r i a l . p r i n t (” Calcu lated PWM2 without s a t u r a t i o n c o n d i t i o n s : ”) ; S e r i a l . p r i n t (value2) ; S e r i a l . p r i n t l n () ;
// run motor 1
i f (tau1 > PWMmax)
{

value1 = PWMmax+compensation10 ;
// S e r i a l . p r i n t l n (”PWM value out o f ope ra tab l e range ”) ;
}

e l s e i f (tau1 < PWMmin)
{

value1 = 1000 ;
// S e r i a l . p r i n t l n (” Motor 1 Pauses ”) ;

}
ESC10 . wr i teMicroseconds (value1) ;

// run motor 2
i f (tau2 > PWMmax)
{

value2 = PWMmax+compensation11 ;
// S e r i a l . p r i n t l n (”PWM value out o f ope ra tab l e range ”) ;

}
e l s e i f (tau2 < PWMmin)
{

// S e r i a l . p r i n t (” Motor 2 Pauses , c a l c u l a t e d PWM: ”) ; S e r i a l . p r i n t (tau2+compensation) ; S e r i a l . p r i n t l n (”\ t ”) ;
va lue2 = 1000 ;

}

28

ESC11 . wr i teMicroseconds (value2) ;

// pin 6 , va lue 3
i f (tau3 > PWMmax)
{

value3 = PWMmax+compensation6 ;
// S e r i a l . p r i n t l n (”PWM value out o f ope ra tab l e range ”) ;

}
e l s e i f (tau3 < PWMmin)
{

// S e r i a l . p r i n t (” Motor 2 Pauses , c a l c u l a t e d PWM: ”) ; S e r i a l . p r i n t (tau2+compensation) ; S e r i a l . p r i n t l n (”\ t ”) ;
va lue3 = 1000 ;

}
ESC6 . wr i teMicroseconds (value3) ;

// pin 9 , va lue 4
i f (tau4 > PWMmax)

{
value4 = PWMmax+compensation9 ;
// S e r i a l . p r i n t l n (”PWM value out o f ope ra tab l e range ”) ;

}
e l s e i f (tau4 < PWMmin)
{

// S e r i a l . p r i n t (” Motor 2 Pauses , c a l c u l a t e d PWM: ”) ; S e r i a l . p r i n t (tau2+compensation) ; S e r i a l . p r i n t l n (”\ t ”) ;
va lue4 = 1000 ;

}

ESC9 . wr i teMicroseconds (value4) ;
S e r i a l . p r i n t (”PWM1: ”) ; S e r i a l . p r i n t (value1) ; S e r i a l . p r i n t (”\ t ”) ; S e r i a l . p r i n t (”PWM2: ”) ; S e r i a l . p r i n t (value2) ; S e r i a l . p r i n t (”\ t ”) ;
S e r i a l . p r i n t (”PWM3: ”) ; S e r i a l . p r i n t (value2) ; S e r i a l . p r i n t (”\ t ”) ; S e r i a l . p r i n t (”PWM4: ”) ; S e r i a l . p r i n t (value2) ; S e r i a l . p r i n t (”\ t ”) ;

S e r i a l . p r i n t l n () ;
S e r i a l . p r i n t l n () ;

}

29

