
 

  

 
 



Abstract 

Sudden rains frequently ambush students and faculties without an umbrella in our campus area. In such 

event, buying a new umbrella is neither convenient nor economical. We present a low cost umbrella 

rental system to help those people without an umbrella in time of need. In this paper, we focus on 

design, implementation and verification of our umbrella rental system. A discussion on cost, ethical 

considerations and future work is also included. 

  

2 
 



Contents 
 

1. Introduction 5 

1.1 Motivation and Purpose 5 

1.2 Features 5 

2 Design 5 

2.1 Design Overview 5 

2.2 Module Details 5 

2.2.1 LCD Display 5 

2.2.2 Power Module 6 

2.2.3 Wi-Fi Module 7 

2.2.4 Lock Module 7 

2.2.5 RFID Module 10 

2.2.6 Control Module 11 

2.2.7 Server Software 12 

3. Design Verification 15 

3.1 Power Module 15 

3.2 LCD Display 15 

3.3 Wi-Fi Module 15 

3.4 Lock Module 15 

3.5 RFID Module 16 

3.6 Control Module 16 

3.7 Server Software 16 

4. Costs 16 

4.1 Parts 16 

4.2 Labor 17 

5. Conclusion 18 

3 
 



5.1 Accomplishments 18 

5.2 Uncertainties 18 

5.3 Ethical considerations 18 

5.4 Future work 19 

References 20 

Appendix A Requirement and Verification Table 21 

 

  

4 
 



1. Introduction 

1.1 Motivation and Purpose 
Sudden rains cause discomfort to any people without an umbrella. Buying a new umbrella is both 

inconvenient and costly: there may not be a shop that sells umbrella nearby, and buying a new umbrella 

each time a sudden rain falls is a waste. Our umbrella rental system aims to provide an economic and 

convenient alternative to buying new umbrellas. For the convenience of our users, we should allow 

users to return an umbrella to a different location; this implicitly requires our design to allow multiple 

umbrella racks to work together. Noting that umbrellas are prone to damage, we must keep track of the 

damaged umbrellas so that they will not be rented again until repaired. 

1.2 Features 
● Automatically choose an undamaged umbrella for rent, and an empty slot for return 

● Authenticate users and umbrellas using RFID tags 

● Allow a user to report damages to the umbrella 

● Prevent a user that has damaged an umbrella from renting temporarily 

● Multiple umbrella racks connected to one server 

● High reliability which allows 24/7 operation, even with unstable network 

5 
 



2 Design 

2.1 Design Overview 

 

Figure 1: System Block Diagram 

Our project consists of 7 modules: Power module, LCD display, Wi-Fi module, RFID module, lock module, 

control module, and server software. 

2.2 Module Details 

2.2.1 LCD Display  

The LCD display unit contains 1602 LCD Display Screen with backlight adjust. The screen takes input from 

microcontroller and display the required content on it. In our case, we use it to display the current status 

of the whole system, user id, wifi communication status and damage report selection.It only reads the 

ASCii code data, so we need to transfer the raw data to ASCii code in order to make it display correctly.  

6 
 



  

Figure 2: LCD pin assignment 

1602 LCD display  is powered by 5v DC voltage from the power pin on the PCB. It can display 16 

characters per line and 2 lines maximum.  Also,  we could adjust the backlight of display by turning the 

10 kΩ variable resistor. 

 
Figure 3: 1602 LCD display 

2.2.2 Power Module 
Our Power module uses a 5V 2.1A wall power adaptor to connect between plug and our pcb. It provides 

stable 5V to support our circuit. Our Microcontroller, Motor driver, stepper motor and Lcd display all 

requires 5V supply, so we can directly wire their power inputs to the power pin on our pcb. Due to 

specifications of our RFID sensor and Wifi chip, we have to use a 5V-3.3V voltage regulator to step down 

the supply in order to power them safely. 

7 
 



 

Figure 4: 5V to 3.3V Schematics [2] 

2.2.3 Wi-Fi Module 
The Wi-Fi Module handles the communication between the microcontroller and the server. It consists of 

a ESP8266 wireless adapter. The ESP8266 chip communicates to the microcontroller using serial 

interface. It is connected to the internet by joining in a local wireless network. Through this internet 

connection it is able to connect to our server located at a static public IP.  

The ESP8266 chip requires 3.3V DC input as its power. Its RX/TX pins operates at 3.3V under normal 

operations.[1] Our microcontroller operates under 5V power supply, which gives a measured 4.2V at its 

TX pin. After repetitive testing and debugging over a one-week period, we decide to directly connect TX 

pin of the microcontroller to RX pin of ESP8266 chip, and use a pull-up resistor to set the signal from TX 

pin of ESP8266 to RX pin of microcontroller to 5V, as shown in Figure 5. 

 

Figure 5: Interfacing ESP8266 with AT89S52 

2.2.4 Lock Module 
The lock module consists of three main components: BYJ-48 Stepper Motor with ULN2003 Darlington 

Transistor, mechanical motor-to-lock setup, and DEMUX IC for minimal microcontroller pin usage. 

The BYJ-48 motor used to drive the lock is a 4 phase 5V DC stepper motor. It takes four input signals 

from microcontroller, first passed through ULN2003 Darlington Transistor to amplify currents, as seen in 

8 
 



the figure below. 

 

Figure 6 : BYJ-48 Stepper Motor with ULN2003 Setup [3] 

The stepper motor is controlled by waves of input pulses from the microcontroller. Each set of pulse 

includes 4 steps, and one pulse will rotate the motor by 5.625°. The input pulse is shown in Table 1: 

Step Port 
Data 

Pin 3 Pin 2 Pin 1 Pin 0 

1 0x03 0 0 1 1 

2 0x06 0 1 1 0 

3 0x0C 1 1 0 0 

4 0x09 1 0 0 1 
Table 1: Stepper Motor Input Pulse 

Because of this the stepper motor can have precise control of rotation. And for reverse direction simply 

send the 4 signal steps in reverse order would make the motor turn in reverse. Speed can be controlled 

by adjusting frequency (delay between each pulse signal) of the input pulse. 

Next is the mechanical setup between lock and the motor. Our lock is modified from existing umbrella 

lock driven by manual key rotations. The final mechanical design lets the motor rotate a tension wire 

connected to a secondary spring loaded trigger that connects to the actual lock arm axle (also spring 

loaded), when tension wire is pulled back by the motor, the secondary trigger pulls the lock arm axle 

triggering it to eject outward releasing the umbrella. Then, motor turns in reverse direction and the 

secondary trigger resets back to “lock” position by its spring, allowing lock arm axle to be locked in place 

again. 

Last component of the Lock Module is the Demultiplexer group. Normally each motor requires 4 signal 

9 
 



pins from Microcontroller, and there would normally be 10 to 20 umbrella locks on each umbrella rack. 

Solution to relieve pin usage is to dd select pins and demultiplexer. Since only one motor will be 

operating at a time, only one set of 4 motor signals is needed. Through implementation of demultiplexer 

IC and select pin, the exact motor would be selected to receive the signal pulse and all other motors 

would receive null signals thus halted. As seen in table below, usage of DEMUX can drastically reduce 

signal pin usage. 

  4 Signal Pin per Motor V.S. 4 Signal Pin with DEMUX Select 
Pins Needed 4*n 4 + x 

Controllable Motor n 2^x 
Table 2: Motor Pin Usage 

The multiplexer used is Texas Instrument 74AC139 DUAL 2 to 4 DEMUX. Each of the 4 motor signals will 

go through one DEMUX and the select bits are shared. The following is the truth table for 74AC139:  

 

Figure 7: 74AC139 Truth Table [4] 

However as seen from table above, the 74AC139 will set the selected output to LOW and others to 

HIGH, thus requiring all signals to go through inverter gates before feeding them to the motors. Therefor 

final schematics of DEMUX and inverter group is shown below: 

10 
 



 

Figure 8 : PCB Schematics for DEMUX Group 

 

2.2.5 RFID Module 
Our RFID module is a RC522 RFID read sensor. It reads RFID tags/cards and output their datas(user ID for 

user card, umbrella ID for umbrella RFID tag) as digital signal to Control Module over SPI interface. The 

Id information will also show on display. Our RFID sensor works at 13.56MHz and works at 3.3V DC. We 

have to use a voltage regulator to step down the voltage.  After actual test, the sensor read range is 

about 7cm which means it will not accidentally read RFiD when people walk pass by. There is no delay 

between user scans rfid and the id shows on the display. 

Figure 9 : RC522 Sensor figure 

11 
 



 

 Blow is the working flowchart of our RFID module: 

Figure 10 : RC522 working flowchart 

2.2.6 Control Module 
Our control module consists of an AT89S52 microcontroller. It is powered by a supply of 5V. It 

communicates with the LCD screen through GPIO pins, with RFID module through SPI interface, and with 

Wi-Fi module through serial interface. The pin assignment is shown in Figure 11. 

12 
 



 

Figure 11: Microcontroller Pin Assignment 

The operational flowchart of the microcontroller is shown in Figure 12. 

13 
 



 

Figure 12: Control Module Flowchart 

The damage report described in the figure above has two types. The first one is sent if a user reports 

damage immediately after renting an umbrella. In this case, we consider the damage to be caused by 

the previous user. The second one is sent if a user reports damage after returning an umbrella. In this 

case, we consider the damage to be caused by the current user. To report damage, the user has to press 

one of the two buttons connected to the microcontroller,  which stand for “yes, report” and “no 

damage”, respectively. 

2.2.7 Server Software 
Our server software is a socket server program written in Python. It collects user inputs from the racks in 

the form of 16-Byte messages, records the status of the system in a MySQL database and gives 

instructions to each rack in 3 Bytes. It consists of a multithreaded socket program written in Python and 

a MySQL database. Figure 13  is an overview of the our server program. 

14 
 



 

Figure 13: Server Overview 

We choose to create a thread for each connection instead of using polling. This design choice gives our 

system extra robustness as each exception thrown in each thread will only terminate the thread, not the 

entire server. 

The operational flowchart of each thread is shown in Figure 14. 

 

15 
 



Figure 14: Server Flowchart 

The source code of our server is included in Appendix B for reference. 

2.3 Design Alternatives 
As both the RFID module and the Wi-Fi module requires 3.3V power supply, an alternative is to power 

the microcontroller using 3.3V. However, our LCD screen must be powered by 5V, and its 11 data pins 

will need to be pulled up if microcontroller is powered by 3.3V. To simplify our circuit, we choose to 

power the microcontroller by 5V. 

In our final design, the user that reports damage caused by a previous user is temporarily banned as 

well. This design decision may sound troublesome, as a user is banned without doing damage himself. 

Our reason to adopt this design is the security of the system. Assume that we do not ban such users 

temporarily. In this case, a malicious user can try to rent umbrella from each of the available slots on a 

rack with multiple attempts, reporting damage each time. By doing this, the malicious user can prevent 

any umbrellas on the rack from being rented, and the innocent previous users will be banned. 

Foreseeing this risk, we decide to ban all users who report damage temporarily. 

3. Design Verification 
All the requirements listed in our Requirements and Verification Table has been met. All the verification 

listed in the Requirements and Verification Table has passed, as shown in the following sections. 

3.1 Power Module 
We verify  our power module by plugging  adaptor to wall power supply and probe our power pin on the 

PCB. Multimeter shows 4.95V which is inside ±5% requirement. Next we connect 5-3.3V voltage 

regulator to the power pin. We probe the Vout pin of the regulator and get 3.275V on the multimeter. 

Adding up the maximum working current for all components:

50mA 25mA 20mA 00mA 40mA 35 mAI total = IRFID + Imicrocontroller + ILCD + Imotor + Iwif i = 1 + 1 + 1 + 2 + 1 = 7  

We are providing 2A current, and it satisfies the current requirement. 

 

3.2 LCD Display 
We connect our 1602 LCD display to 5V power supply and probe its power pin. 4.95V shows on the 

multimeter and it satisfy our requirement for LCD. Next we verify LCD’s backlight adjust feature. After 

turning the variable resistor, the backlight changes accordingly. In order to verify that 1602 could display 

all 10 numbers, 26 characters including upper and lower cases, we input them one by one from 

microcontroller. All the inputs shows up correctly.  

3.3 Wi-Fi Module 
We set the ESP8266 wireless adapter to a wireless network created by a phone running a mobile 

hotspot. This setting is persistent across chip reboots. We run a test server on public internet which 

16 
 



source code is included in Appendix C.  

The message sent by the rack is shown in command-line correctly after we turned on the 

microcontroller.  The mock reply is shown on the LCD correctly with occasional transmission loss 

(message not received) due to unstable phone signal.  

Later, we verified the auto-reconnect feature after it has been implemented. We starts the 

microcontroller program after shutting down the mobile hotspot. Within 10 seconds after we turned on 

the mobile hotspot again, the server command-line window displays a message received from the 

device. 

Therefore all requirements for Wi-Fi module and the last requirement in “Security and Reliability” 

section has been met. 

3.4 Lock Module 
Each lock went through series of testings prior to final assembly onto the rack. After motor and tension 

wire had been installed and locked in place they are powered on and tested with data pins from 

microcontroller to open and close at least 5 times, all within 5 seconds. If everything is in working order 

this lock will be assembled onto the rack and tested again. After all 3 locks had been assembled on rack, 

wirings for all three motor and ULN2003 driver are connected to the PCB and tested again. Each lock is 

set to open and close in sequence, and time of each open is measured at around 2 seconds, and close 

for another 2 seconds, achieving all requirements for Lock Module. 

3.5 RFID Module 
We verify our RFID module by first connect it to the 3.3V power supply. After probing it, the multimeter 

shows 3.28V which is an acceptable working voltage for the RFID. Next, we test its working current. 

Multimeter shows 80mA, which is below the maximum current allowed(100mA)[5] 

After connecting RFID and LCD together to our microcontroller, we scan one of our RFID cards and the 

card ID immediately shows on the display. We try several scans later and LCD shows consistent card id, 

which means our RFID sensor can correctly read  RFID card information. 

 

3.6 Control Module 
During our testing of the completed rack, our microcontroller program’s execution matches the 

operational flowchart in Figure 12 after all other modules are attached; therefore the control module’s 

requirements have been met. 

3.7 Server Software 
We tested the server program using a mock client program that simulates the operation of a real rack 

and displays messages it receives. The source code of this program is included in Appendix D. To verify 

the server’s capability to respond to multiple racks, we have done additional tests with the server and: 

1) the real physical rack and a mock client, and 2) 5 mock clients. We use mysql console to check the 

data correctness in the database during those tests. Our server program passes all the tests and thus 

17 
 



satisfies all the requirements. 

In addition, we tested using our rack after restarting the server. As we have examined, records in the 

database is not lost. Therefore, the requirements in “security and reliability” section has been met as 

well. 

4. Costs 

4.1 Parts 
 

Part Manufacturer Retail Cost ($) Bulk Purchase Cost 
($) 

AT89S52 Atmel $3 each $1.16 each 
PCB PCB Way $3.80 each $0.559 each 

Motor & Driver Generic $20 per 10 pair $8.50 per 10 pair 
RC522 RFID Generic $25 $4.6 per Reader + 10 

Card 
ESP8266 WiFi Generic $4 each $2.20 each 

1602 LCD Generic $3 each $1.31 each 
Rack Generic $15 each $10 each 

Power Supply Generic $6 $3 
DEMUX IC Texas Instrument $8 per 4 pair $1.152 per 4 pair 

Other IC (Inverter, 
etc) 

Texas Instrument $4 $1.768 

Total  $91.80 $34.24 
Table 3: Parts & Costs 

4.2 Labor 
 

Name Hours Invested Hourly rate Total 

Shuodong Zhang 220 $30 $6600 

Yiheng Xu 220 $30 $6600 

Xinyi Wu 220 $30 $6600 

Total Labor Cost $19800 

Table 4: Labor Costs 

 

  

18 
 



5. Conclusion 

5.1 Accomplishments 
Final product of project before demonstration is fully functional meeting all initial design specifications. 

All Requirement had been met and Verified. We were able to incorporate all parts and modules into the 

product, complete writing driver, firmware and software codes, and achieve full function status with 

PCB/parts soldering and system assembly. 

The Umbrella Rental System prototype is easy to use in general with fluent user experience reflected 

through ease of use, system latency, and LCD information prompt convenience. All high level 

requirements set in initial proposal had been met with our prototype: 24x7 service, power loss data 

preservation, easy to use system, damage reports, as well as low operation costs. 

Furthermore, we exceeded our initial high level requirements for low manufacture costs, with 

requirement of $150, actual functional prototype cost of $91.80, and estimated bulk cost of only $34.24 

(See section 4.1 Parts Costs). 

5.2 Uncertainties 
As a prototype the product still have many uncertainties that may lead to issues. First is its exposed 

wiring and circuitry. Due to time limitation and easier debugging capability, current prototype has many 

exposed wirings, and PCB is stored in an open to cardboard box. Not only is this not safe, it is also prone 

to water damage from wet umbrellas with the project being an umbrella rack. 

Second, current rental database algorithms may have unconsidered corner cases for malicious activity 

prevention. This is also an uncertainty for system security and maintenance. 

5.3 Ethical considerations 
The IEEE and ACM codes of ethics both states that we should avoid harm to others, especially our users. 

By design, our product is only a verification and logging system for access of shared resource 

(umbrellas), and is not likely to make direct contact with our users. Therefore, throughout operations 

and usage of our product it is quite impossible to physically harm people. 

 The ACM Code of Ethics also states that we should respect privacy [6]. We log user activities by 

recording their IDs, leasing and return time (and possibly video recordings of them if we decide to utilize 

a security camera). We plan to limit our data collection  by automatically deleting archived files when a 

certain time period has passed. 

 Our project takes responsibility of IEEE code of ethics #1 “To accept responsibility in making decisions 

consistent with the safety, health, and welfare of the public, and to disclose promptly factors that might 

endanger the public or the environment.” [7] This system will benefit the community by providing great 

19 
 



convenience and will not cause harm to public safety or the environment. 

 We will also try to do our best to follow IEEE code of ethics #3 “to be honest and realistic in stating 

claims or estimates based on available data.” [7] We will make sure that our function works based on 

the data we collect. To follow IEEE code of ethics #7, we will also be open to accept any critic or 

comment on our design and the technical implementation. All suggestions are helpful towards a 

successful project. 

5.4 Future work 
First the system could be improved with better wiring and circuitry design, better protection for PCB and 

completely redesigned liquid prevention for entire circuitry. 

Second, the rental database algorithm could be improved for more complete protection against corner 

cases and malicious activities, a better balance between user experience and system security. For 

example current implementation bans current user account temporarily when damage is reported, even 

if current user is not responsible, which can cause negative user experience. 

Third, a better user registration and account management interface is needed, this can be designed as 

websites or mobile applications. 

Furthermore, payment system could be setup on the server database for commercial applications of the 

project. 

Lastly, more security options could be added, for example encryption for RFID chips and authorization 

process to prevent fake/cloned RFIDs; additional sensor for umbrella return status, etc. 

  

20 
 



References 
 

[1]    ESP8266Datasheet  Available at: 

https://espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf Accessed 

Mar 2017. 

[2] AMS1117 datasheet, AMS-Semitech.com. Available at: 

http://ams-semitech.com/attachments/File/AMS1117_20120314.pdf Accessed Mar 2017. 

[3] BYJ-48 Stepper Motor, Instructables.com. Available at: 

http://www.instructables.com/id/BYJ48-Stepper-Motor/ Accessed Mar 2017. 

[4] CD74AC139 Dual 2 to 4 Decoder, Texas Instrument. Available at: 

http://www.ti.com/lit/ds/symlink/cd74ac139.pdf Accessed Mar 2017. 

[5] RC522 Datasheet Available at: 

        https://www.elecrow.com/download/MFRC522%20Datasheet.pdf Accessed Mar 2017. 

  

[6]  Acm.org “ACM ACM Code of Ethics and Professional Concuct”, 2017, [online]. available: 

       http://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct. Accessed Mar 2017. 
 
[7] Ieee.org “IEEE IEEE Code of Ethics”, 2017 [online]. available：

http://www.ieee.org/about/corporate/governance/p7-8.html. 

 

  

  

21 
 

https://espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
http://ams-semitech.com/attachments/File/AMS1117_20120314.pdf
http://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct
https://www.elecrow.com/download/MFRC522%20Datasheet.pdf
http://www.ieee.org/about/corporate/governance/p7-8.html
http://www.ti.com/lit/ds/symlink/cd74ac139.pdf


Appendix A Requirement and Verification Table 

Requirement Verification Score 

Power Module 

1.Provide stable voltage at 5V +/- 5%. 

2.Provide at least 1A of sustained current at 

5V voltage. 

3. The voltage regulator circuit runs 

correctly, giving 3.3V +/- 0.1V of voltage with 

5V input. 

1. a.) Connect multimeter to power module 

Vcc and GND to measure voltage. 

   b.) Verify this voltage is within 4.75V to 

5.25V range. 

2. a.) Connect a 5 Ohm resistor that can 

withstand 1A current between power 

module’s Vcc and GND 

   b.) Use a multimeter to verify that stable 

current of 1 A can be reached. 

3. Use a multimeter to probe the output of 

voltage regulator circuit. The voltage output 

between Vout and GND should be between 

3.2V and 3.4V. 

0+0+5 

  

RFID Module 

1. Must support interface other than UART 

because microcontroller has only one set of 

UART I/O 

2. Implement driver for RFID module, to 

allow scanning and sending correct 

13.56Mhz RFID card data or instructions 

to/from microcontroller. 

1. Our choice of RC522 as our RFID reader 

satisfy this requirement because it has SPI 

interface support 

2. a.) First verify our AT89S52 microcontroller 

and LCD screen. 

   b.) Program the microcontroller to read card 

number from the RFID module and display it 

on LCD screen. 

   c.) Connect RFID module to microcontroller, 

let microcontroller to run and scan an RFID 

tag. See if the correct card number is displayed 

in 9 character format. 

5 

(0,5) 

  

22 
 



Control Module 

1. Spec requirements: 

Microcontroller should operate at around 5V 

DC with adequate Vin tolerance for reliability 

in case of unstable power supply. 

Microcontroller of choice (AT89S52) should 

have support for interfacing with RFID, wifi, 

screen and lock modules. 

2. Microcontroller software realizes all the 

high-level requirements and the designed 

functions described in the microcontroller 

operation flow chart, without hangs. 

1. Check the microprocessor spec sheet[2] for 

verification. 

2. Test the complete system as a user after all 

other verifications has been done. Go through 

all the states and transitions and see if the 

system releases umbrella in error or hangs in 

undefined states. 

The tests and expected results are: 

1)       Power on the rack. Expected result: 

system displays anything meaningful on 

the LCD screen in the initialization phase. 

2)       Wait for initialization to end. 

Expected Result: The LCD screen prompt 

user to scan a card after initialization 

ends. 

3)       Scan a RFID card/tag. 

Expected result: 

After the rack displays the card number, 

the server command line interface should 

show the correct 16-byte message 

received containing UID of the rack, the 

RFID card number and damage flag as ‘N’. 

4)       Wait until the 3-character server-to-client 

message is displayed on the LCD. 

Expected Result: If the third digit of 

server-to-client message is “L” or “R”, 

motor specified by the second character 

in the message should rotate. Otherwise 

the LCD screen should notified the user as 

being denied access. 

5)       Press a button when prompted by LCD 

screen. 

Expected Result: if Yes button is chosen, the 

server command line window should receive a 

message with damage flag ‘D’ or ‘P’ depending 

on the previous message from server contains 

‘R’ or ‘L’. 

6)       See if the rack returns to prompt for scan 

RFID tag again. 

5 

(0,5) 

23 
 



Lock Module 

1. The drive for lock module is able to rotate 

each different lock’s motor. 

2. The lock must successfully open or close in 

a maximum of 5 seconds. 

1&2. a.) Connect the stepper motor to the 

mechanical lock. 

        b.) Program the stepper motor to 

open/close the lock. 

        c.) Make sure the lock opens and closes 

correctly each within 5 seconds. 

3. After testing LCD screen, RFID module and 

Wi-Fi module, Use our server and different 

RFID tags to make the rack call the motor 

unlock function with different inputs. At least 

2 different locks should be able to rotate after 

this function is called. 

5 

(0,0,5) 

Wifi Module 

Implement driver for wifi module so that: 

1. Wifi Module can connect to 

preprogrammed wireless network and send 

data to master PC’s listening port. 

Microcontroller can properly read data sent 

from the master PC through serial interface. 

1. 

a.         Check server command-line interface on 

master PC to see if our rack is connected to 

the server. 

b.         Code the server on master PC to display 

data received to see if the data sent from the 

rack is correct. 

c.          Write testing program to run on the 

microcontroller to display data read over serial 

interface. Check if data can be received 

correctly. 

Alternative c) : after verifying a) and b), code 

the server to reply and code the 

microcontroller to display received data from 

ESP8266. 

8 

(1+5+2) 

Screen Module 

1. Display shall have at least 2 lines, each 

with 16 characters; takes digital input from 

microcontroller, full ASCII support. 

2. Implement driver for the screen so that 

the microcontroller can make screen display 

a message with length at most 16 characters. 

1. Our choice of LCD 1602 module satisfy the 

first two requirements. It has 16x2 characters 

and full ASCII support. 

2. After implementing our LCD screen driver 

on the microprocessor, write any program to 

display 16 ASCII characters on the screen. 

5 

(0,5) 

24 
 



Master PC Software 

1. Master PC software correctly reads data 

from listening port. 

2. Master PC database correctly perform the 

following operations: 

a.         query for user and umbrella ID, 

b.         add entry for user rent/return, 

c.          refresh rack status, 

d.         make decision correctly based on the 

data above 

3. Software on Master PC links correctly the 

network interface and the database. It can 

pass the data read from network to 

inversely. 

1. Write testing program to display data read 

from the connection. 

2. During runtime, read the database for the 

mentioned data using manual MySQL 

database operations. Check if they are 

accessed correctly. 

3. Display the server’s reply in command-line 

interface. Determine if it is correct based on 

the running state of master PC and rack. 

11 

(0,6,5) 

Security and Reliability 

1. We aim for adequate reliability for 24/7 

database system online usecase. The 

software on PC, if crashed, will not cause 

persistent data in the database to be lost. 

2. In the case of microprocessor power loss 

and reboot, states of umbrella availability 

should not be lost. 

3. In the case of connection lost, the rack will 

automatically reconnect to the Wi-Fi 

network and server’s listening port and 

re-send the message. 

1. a.) Force terminate the database software 

on PC. 

   b.) Examine the data in the database. Data 

that was already stored in the database prior 

to the termination should not be lost. 

2. a.) Unplug the rack from power. 

   b.) Examine the rack information on master 

PC and ensure the data is not lost. 

3. 

a) Before scanning RFID tag, power off the 

wireless router. 

b) Scan RFID tag and power on the router. 

c) See if the client-to-server is sent within 20 

seconds after the Wi-Fi network becomes 

available by looking at server command-line 

interface. 

6 

(3,0,3) 

 Total 50 

 

25 
 



Appendix B Server Program Source Code 

B.1 Main Program: Server.py 
#!/usr/bin/env python 

 

import socket 

import sys 

import datetime 

from thread import * 

import database as db 

 

 

if len(sys.argv) != 3: 

print 'python server.py IP_address PORT_number' 

sys.exit() 

 

TCP_IP = sys.argv[1] 

TCP_PORT = int(sys.argv[2]) 

BUFFER_SIZE = 20  # Normally 1024, but we want fast response 

 

count = 0 

list_conn = [] 

list_addr = [] 

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

print 'Socket Created' 

try: 

s.bind((TCP_IP, TCP_PORT)) 

except socket.error as msg: 

print 'Bind failed. Error:' + str(msg[0]) + ' Message '+msg[1] 

sys.exit() 

s.listen(10) 

 

def clientthread(conn): 

##conn.send('Server ACK placeholder\n') 

while True: 

try: 

data=conn.recv(BUFFER_SIZE) 

except socket.error as msg: 

print 'Receive failed. Error:' + str(msg[0]) + ' Message '+msg[1] 

break 

if not data: 

break 

print 'Data received from: ',addr,' Data: ',data 

##process data, craft reply msg 

"""if data == "UcantBserious": 

inputrack = str(raw_input("Select rack number for address"+str(addr))) 

reply = "0"*(3-len(inputrack))+inputrack+"0"*3 

print "Reply is: ",reply""" 

26 
 



rackUID = str(data)[:-10] 

ID = str(data)[6:-1] 

Damage = str(data)[15:] 

time = str(datetime.datetime.now()) 

print rackUID 

print ID 

print Damage 

print time ##TODO 3/15/2017:ADD HISTORY 

 

if db.validateRack(rackUID)==False: ##rack does not exist 

reply = "00D" ##deny 

elif db.validateUmbrella(ID)==True: ##umbrella is being returned by a user 

slot = db.findSlot(rackUID,"Empty") 

if slot == -1 and Damage == "N":  ##no empty slot for return 

reply = "00D" ##deny 

else: 

link_id = db.trackUmbrella(ID) ##link_id must be of a user when umbrella is leased 

if Damage == "D":  

##if db.fetchUserStatus(link_id)!="damagereported": ##user haven't reported 
damage when he leased this umbrella 

reply = "00D" 

prevSlot = db.getLastSlot(ID) 

prevUser = db.findLastUser(rackUID,prevSlot) 

db.updateUserStatusTime(prevUser,"returndamaged",time) ##mark user 
damaged this umbrella 

db.updateSlot(rackUID,prevSlot,"Damaged",link_id) ##mark slot as having a 
damaged umbrella, last user is link_id 

db.createHistory(prevUser,rackUID,prevSlot,time,"returnDamaged") 

elif len(link_id)<8: 

reply = "00D"  

else: 

reply = "0"*(2-len(str(slot)))+str(slot)+"R" ##Accept return 

##Assume no damage... 

db.assignLastSlot(ID,slot) 

db.updateUserStatusTime(link_id,"returned",time) ##update user status 

db.updateSlot(rackUID,slot,"Available",link_id) ##update rack status, slot 
available again, last user is link_id 

db.createHistory(link_id,rackUID,slot,time,"return") 

link_slot_ID=rackUID+str(slot) ##link umbrella with current slot 

db.markUmbrella(ID,link_slot_ID) 

elif db.validateUser(ID)==True:##Valid User ID 

if db.fetchUserStatus(ID)=="returned": ##new lease or return damaged 

slot = db.findSlot(rackUID,"Available") 

if slot == -1:  ##no available umbrella  

reply = "00D" ##deny 

elif Damage == 'N': ##available 

reply = "0"*(2-len(str(slot)))+str(slot)+"L" ##Accept Lease 

link_slot_ID = rackUID+str(slot) ##??? 

umbrella_id = db.findUmbrellaByLink(link_slot_ID) ##find the umbrella to be 
leased 

db.markUmbrella(umbrella_id,ID) ##link user ID with this umbrella 

27 
 



db.updateSlot(rackUID,slot,"Empty",ID) ##update rack status 

db.updateUserStatusTime(ID,"leasing",time) ##update user status 

db.createHistory(ID,rackUID,slot,time,"lease") 

else: 

##returndamaged 

###############TODO:find last slot used by user, mark it damaged; mark 
user as returndamaged; 

reply = "00D" 

prevSlot = db.getLastSlot(ID) 

db.updateSlot(rackUID,prevSlot,"Damaged",ID) 

db.updateUserStatusTime(ID,"returndamaged",time) 

db.createHistory(ID,rackUID,prevSlot,time,"returnDamaged") 

elif db.fetchUserStatus(ID)=="leasing": ##return or pre-lease report 

slot = db.findSlot(rackUID,"Empty") 

umbrella_id = db.findUmbrellaByLink(str(ID)) 

if slot == -1:  ##no empty slot for return 

reply = "00D" ##deny 

else: ##return by scanning user ID 

reply = "0"*(2-len(str(slot)))+str(slot)+"R"  ##Accept Return ##Bug: Opens slot 
twice when no damage reported 

if Damage == "P": ##user reported pre-lease damage 

db.updateUserStatusTime(ID,"damagereported",time) 

""" 

last_user_ID = db.findLastUser(rackUID,slot) 

if db.fetchUserStatus(last_user_ID)!="damagereported": 

db.updateUserStatusTime(last_user_ID,"returndamaged",time) 

""" 

db.updateSlot(rackUID,slot,"Damaged",ID) 

db.createHistory(ID,rackUID,slot,time,"leaseDamaged") 

db.createHistory(ID,rackUID,slot,time,"returnDamaged") 

elif Damage == "D": ##Return damaged but should consider the case in which 
user reported damage before 

###if db.fetchUserStatus(ID)!="damagereported": ##user haven't 
reported damage when he leased this umbrella 

db.updateUserStatusTime(ID,"returndamaged",time) ##mark user 
damaged this umbrella 

db.updateSlot(rackUID,slot,"Damaged",ID) ##mark slot as having a 
damaged umbrella, last user is ID 

db.createHistory(ID,rackUID,slot,time,"returnDamaged") 

else: ##Assume No damage safe return, waiting for damage report 

db.updateSlot(rackUID,slot,"Available",ID) ##mark slot available for 
rent again, last user is link_id 

db.assignLastSlot(ID,slot) 

db.updateUserStatusTime(ID,"returned",time) ##update user as 
returned 

db.createHistory(ID,rackUID,slot,time,"return") 

link_slot_ID=rackUID+str(slot) ##link umbrella with current slot 

db.markUmbrella(umbrella_id,link_slot_ID)  

 

else: 

reply = "00D" ##deny because user damaged umbrella previously 

28 
 



else: 

reply = "00D" ##deny because no ID match 

print "Reply is: "+reply 

 

##reply='Reply Undefined' 

try:  

conn.sendall(reply) 

except socket.error as msg: 

print 'Send failed. Error:' + str(msg[0]) + ' Message '+msg[1] 

break 

conn.close() 

 

 

##conn, addr = s.accept() 

##print 'Connection address:', addr 

while 1: 

conn, addr = s.accept() 

print 'Connection address:', addr 

count = count + 1 

start_new_thread(clientthread,(conn,)) 

print count 

s.close() 

 

B.2 Helper: database.py 
import MySQLdb as mdb 

 

def connect(): 

 

return mdb.connect(host="localhost", user="ece445", passwd="12345678", db="foo2"); 

##Users 

def createUser(userid,status,lasttime): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("INSERT INTO users(id, userid, status, lasttime) VALUES (NULL,%s,%s,%s);", (userid,status,lasttime)) 

db_rw.commit() 

def validateUser(userid): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("SELECT userid FROM users WHERE userid = %s;", (userid,)) 

if cur.rowcount < 1: 

return False 

return True 

def fetchUserStatus(userid): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("SELECT status FROM users WHERE userid = %s;", (userid,)) 

return cur.fetchone()[0] 

def updateUserStatusTime(userid,status,lasttime): 

db_rw=connect() 

29 
 



cur=db_rw.cursor() 

cur.execute("UPDATE users SET status=%s, lasttime=%s WHERE userid = %s;",(status,lasttime,userid)) 

db_rw.commit() 

def fetchUserById(userid): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("SELECT * FROM users WHERE userid = %s;", (userid,)) 

if cur.rowcount < 1: 

return None 

return cur.fetchone() 

def listUsers(garbage): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("SELECT * FROM users;") 

return cur 

##History 

def createHistory(userid, rackUID, slot, time, operation): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("INSERT INTO history(id, userid, rackUID, slot, time, operation) VALUES (NULL, %s,%s,%s,%s,%s);", 
(userid, rackUID,slot,time,operation)) 

db_rw.commit() 

def fetchHistory(garbage): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("SELECT * from history;") 

return cur 

##Umbrella 

def createUmbrella(umbrella_id,link_id): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("INSERT INTO umbrellas(id, umbrella_id, link_id) VALUES (NULL, %s, %s);", (umbrella_id,link_id)) 

db_rw.commit() 

def validateUmbrella(umbrella_id): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("SELECT umbrella_id from umbrellas WHERE umbrella_id = %s;", (umbrella_id,)) 

if cur.rowcount < 1: 

return False 

return True 

def trackUmbrella(umbrella_id): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("SELECT link_id from umbrellas WHERE umbrella_id = %s;",(umbrella_id,)) 

link_id = cur.fetchone()[0] 

return link_id 

def findUmbrellaByLink(link_id): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("SELECT umbrella_id from umbrellas WHERE link_id = %s;",(link_id,)) 

30 
 



umbrella_id=cur.fetchone()[0] 

return umbrella_id 

def markUmbrella(umbrella_id,link_id): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("UPDATE umbrellas SET link_id = %s WHERE umbrella_id = %s",(link_id,umbrella_id)) 

db_rw.commit() 

def listUmbrellas(garbage): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("SELECT * FROM umbrellas;") 

return cur 

#locations 

def createRack(UID,slot,state,lastuser): 

if len(UID)!=6: 

return False 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("DELETE FROM locations WHERE UID = %s;",(UID,)) 

k = int(slot) 

for i in range (1,k+1): 

cur.execute("INSERT INTO locations(id,UID,slot,state,lastuser) VALUES 
(NULL,%s,%s,%s,%s);",(UID,str(i),state,lastuser)) 

db_rw.commit() 

return True 

def validateRack(UID): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("SELECT * from locations WHERE UID = %s;",(UID,)) 

if cur.rowcount < 1: 

return False 

return True 

def findSlot(UID,state): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("SELECT slot from locations where UID = %s AND state = %s;",(UID,state)) 

if cur.rowcount<1: 

return -1; 

else:  

slot=int(cur.fetchone()[0]) 

return slot; 

def updateSlot(UID,slot,state,lastuser): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("UPDATE locations SET state = %s, lastuser = %s WHERE UID=%s AND slot = %s;",(state,lastuser,UID,slot)) 

db_rw.commit() 

def findLastUser(UID,slot): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("SELECT lastuser from locations WHERE UID = %s AND slot = %s;",(UID,slot)) 

31 
 



userid=cur.fetchone()[0] 

return userid 

def listLocation(garbage): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("SELECT * FROM locations;") 

return cur 

 

#lastSlot 

def assignLastSlot(itemid,slot): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("DELETE FROM lastSlot WHERE itemid = %s;",(itemid,)) 

db_rw.commit() 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("INSERT INTO lastSlot(itemid,slot) VALUES (%s,%s);",(itemid,slot)) 

db_rw.commit() 

def getLastSlot(itemid): 

db_rw=connect() 

cur=db_rw.cursor() 

cur.execute("SELECT slot FROM lastSlot WHERE itemid = %s;",(itemid,)) 

slot = cur.fetchone()[0] 

return slot 

Appendix C Test Server Source Code 
#!/usr/bin/env python 

 

import socket 

import sys 

import datetime 

from thread import * 

#import database as db 

 

 

if len(sys.argv) != 3: 

print 'python server.py IP_address PORT_number' 

sys.exit() 

 

TCP_IP = sys.argv[1] 

TCP_PORT = int(sys.argv[2]) 

BUFFER_SIZE = 20  # Normally 1024, but we want fast response 

 

count = 0 

list_conn = [] 

list_addr = [] 

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

print 'Socket Created' 

try: 

32 
 



s.bind((TCP_IP, TCP_PORT)) 

except socket.error as msg: 

print 'Bind failed. Error:' + str(msg[0]) + ' Message '+msg[1] 

sys.exit() 

s.listen(10) 

 

def clientthread(conn): 

##conn.send('Server ACK placeholder\n') 

while True: 

try: 

data=conn.recv(BUFFER_SIZE) 

except socket.error as msg: 

print 'Receive failed. Error:' + str(msg[0]) + ' Message '+msg[1] 

break 

if not data: 

break 

print 'Data received from: ',addr,' Data: ',data 

##process data, craft reply msg 

"""if data == "UcantBserious": 

inputrack = str(raw_input("Select rack number for address"+str(addr))) 

reply = "0"*(3-len(inputrack))+inputrack+"0"*3 

print "Reply is: ",reply""" 

reply = "04R" 

print "Reply is: "+reply 

 

##reply='Reply Undefined' 

try:  

conn.sendall(reply) 

except socket.error as msg: 

print 'Send failed. Error:' + str(msg[0]) + ' Message '+msg[1] 

break 

conn.close() 

 

 

##conn, addr = s.accept() 

##print 'Connection address:', addr 

while 1: 

conn, addr = s.accept() 

print 'Connection address:', addr 

count = count + 1 

start_new_thread(clientthread,(conn,)) 

print count 

s.close() 

 

 

 

Appendix D Mock Client Source Code 
#!/usr/bin/env python 

33 
 



 

import sys 

import socket 

import time 

import random 

##This program is written under python 2.7.3 

##For python 3.0, replace: raw_input 

if len(sys.argv) != 3: 

print 'python client.py IP_address PORT_number' 

 

""" 

input1 = str(raw_input("Enter rack number:")) 

x = len(input1) 

input2 = str(raw_input("Enter ID:")) 

y = len(input2) 

input3 = str(raw_input("Report Damage?")) 

message = "0"*(3-x)+input1+"0"*(9-y)+input2+input3 

print message 

""" 

 

 

def openslot(slot): 

print 'slot',slot,'opened.' 

 

TCP_IP = sys.argv[1] 

TCP_PORT = int(sys.argv[2]) 

BUFFER_SIZE = 100 

temp = str(raw_input("Enter rack UID:")) 

UID = "0"*(3-len(temp))+temp 

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

s.connect((TCP_IP, TCP_PORT)) 

#s.send("UcantBserious") 

#data = s.recv(6) 

#print "received data:", data 

#rack = str(data)[:-3] 

#x = len(rack) 

while 1: 

ID = str(raw_input("Enter ID:")) 

y = len(ID) 

damage = str(raw_input("Report Damage?")) 

message = UID+"0"*(9-y)+ID+damage 

s.send(message) 

data = s.recv(3) 

print "received data:", data 

slot = int(str(data)[:-1]) 

permission = str(data)[2:] 

if permission == "L": 

openslot(slot) 

print "Lease permitted." 

elif permission == "R": 

34 
 



openslot(slot) 

print "Return accepted." 

elif permission == "D":  

print "Denied." 

else: 

print "Boom! You have entered undefined state" 

##s.send(message) 

##data = s.recv(BUFFER_SIZE) 

##s.close() 

garbage = raw_input("Enter something when you are ready for next iteration.") 

 

##time.sleep(10*random.random()) 

 

 

 

 

 

35 
 


