
Multi-Microphone Array
Final Report

Team Members:
Kenneth Zhang

Sida Xiong
Thomas Kao

Teaching Assistant:
Michael Fatina

ECE 445, Senior Design
Project No. 87

May 3, 2017

Abstract

Acoustic scene analysis is a discipline that aims to process and interpret, from different
perspectives, the acoustic information diffused in the environment. The primary method
for obtaining this environmental sound data is to use a microphone array. The idea of
large scale microphone arrays have existed since 1994. H.F Silverman of Brown Univ.
and his team designed a 512-microphone array system but faced several limitations in
portability and scalability, due to the hardware at that time. In this document, we present
the design for a scalable and portable multi-microphone array. The central hub
communicates with multiple microphone arrays, synchronizing and storing the collected
sound data onto external storage. This document provides details for both the hardware
and software design of the system and verification of finished modules.

Table of Contents

1 Introduction 1
1.1 Purpose 1

2 Hardware Design 2
2.1 Block Diagram 2
2.2 Power System 4
2.3. Microphone Array Module 4
2.4 Processing Hub 5

3 Software Design 7
3.1 Sampling Frequency 7
3.2 Synchronization Algorithm 7

4 Design Challenges 10
4.1 Industrial Micro-controller 10
4.2 Miniature Parts to Assemble 10
4.3 Properly Defining the Project Scope 10

5 Verifications 11
5.1 Voltage Regulator 11
5.2 Microphone Array 11
5.3 Software Requirements 11

6 Cost Analysis 12
6.1 Labor 12
6.2 Parts 12
6.3 Grand Total 12

7 Conclusion 13
7.1 Accomplishments 13
7.2 Uncertainties 13
7.3 Ethics 13
7.4 Future Work 14

References 15
Appendix A: Requirements & Verification 16

Appendix B: Central Hub Schematic 18
Appendix C: Microphone Array Schematic 19

1 Introduction
1.1 Purpose
In 1994, scientists at Rutgers and Brown set out to build a versatile research platform
for experimenting with a large microphone array. They were able to put together an
array of 512 microphones, but due to the available technology, the project required an
excessive amount of hardware, rendering it difficult to setup and use [1]. With the
introduction of MEMS microphones and other advancements in hardware technology,
recent systems have been able to improve their microphone density, detection
sensitivity, and processing capabilities. Most notably, an array of 4096 microphones was
built in 2014, by an Norwegian engineering firm, Sorama [2].

Our goal for this project was to create a system that could be used in a variety of
environments while still providing fine detection capabilities. To accomplish this, we
chose a modular design with individual microphone array modules that could be
connected to the central hub in different ways based on the user’s design choices. The
ability to scale and reconfigure the system gives the user flexibility in where they can
implement it. Our intent was to have the system take in the sound data from the array
modules and save that data to a WAV file for future processing. To accomplish this, the
system would consist of microphone array modules, which would serve as the front-end
detection stage, and a central processing hub, which would synchronize the collection
of sound data and convert it into the WAV file format.

1.2 Objectives
1.2.1 Goals and Benefits

• Easily reconfigurable parameters in software

• Portable and low power

• Expandable to fit application requirements
1.2.2 Functions and Features

• Microphone array modules that can be added to the system and rearranged based
on application

• Processing hub that synchronizes the sound data and stores sound sampling into
external storage

�1

2 Hardware Design
2.1 Block Diagram
Our design consists of three main modules, as seen in Figure 1: the power supply,
microphone array modules, and central processing hub. The power system supplies a
steady voltage of 3.3 V to the entire system. The microphone array module consists of 4
analog MEMs microphones, 2 ADCs, and a micro-controller, as seen in Figure 2. These
array modules connect to the central processing hub, which consists of one micro-
controller and a USB drive, as seen in Figure 3.

Figure 1: High level diagram of entire system

�2

Figure 2: Block diagram of microphone array module

Figure 3: Block diagram of processing hub

�3

2.2 Power System
2.2.1 Voltage regulator
In order to ensure a steady input voltage of 3.3 V to the system, we designed and built
our own linear voltage regulator. Initially, we planned on using a buck converter, since it
is more efficient than a linear regulator, which dissipates extra power as heat. However,
we decided that the efficiency wasn’t a huge concern for our application and we chose
the linear regulator. The circuit consists of a MOSFET, a 2.8 V zener diode, and several
resistors. With this voltage regulator, we were able to handle input voltages of 4 V - 6 V
and output 3.3 V with deviations of up to .1 V. The current drawn from our voltage
regulator reached a maximum of .3 A. The design for the voltage regulator is shown in
Figure 4.

Figure 4: Voltage regulator schematic

2.2.2 Battery
Given our available input range for the voltage regulator, we decided to use standard
1.5 V AAA batteries. We connected them in series to produce a voltage of 4.5 V and
then used that as the input to our voltage regulator. We decided against using a lithium
ion battery because of the inherent safety hazards, such as the flammable electrolyte.
AAA batteries were safer and suited our needs just as well as lithium ion batteries.

2.3. Microphone Array Module
For the microphone array module, we had several design decisions to make. The first
consideration was how many microphones to put in each array. With more microphones
placed in the array, the array can have more sensitive detection capabilities. This is
because when microphones are placed closer together, they can detect shorter
wavelengths. Ultimately, due to constraints from the parts that we chose for the module,
we decided to have 4 microphones per array, which is enough for our applications. As
seen from (1), where V is the speed of sound, f is the frequency of human speech, and

�4

d is the distance between microphones. We set V to 340.29 m/s and f to 255 Hz, which
is around the upper average frequency of human speech, which results in d comes out
to 1.3344 m. Our microphones are placed much closer than this, allowing for even
higher frequencies to be captured. With four microphones, we decided that the best
configuration is a square. In this way, the array can detect symmetrically from every
direction in a 2D plane.

� (1)

2.3.1 Analog MEMS Microphones
We chose to use analog microphones because they are available in smaller packages
than digital microphones. Size is such an important consideration for our microphone
array modules, so we decided that using analog microphones would give us more
flexibility with the design choices.

For our array, we decided to use the Invensense ICS-40720 analog MEMS
microphones. These microphones have a frequency response from 75 Hz to 20 kHz,
which encompasses 99.7% of the frequencies of the human voice. In addition, they are
available in small 4.0 mm x 3.0 mm x 1.2 mm packages, which allows us to scale down
the modules to a very small size [3].

2.3.2 Analog - Digital Converter (ADC)
Because we decided to use analog MEMS microphones, we needed to choose ADCs
as well. There were many ADCs with advanced DSP functionalities built in, but they
required much more configuration. To reduce the complexity, we chose to use the TI
PCM 1804 ADC. This ADC is simple to configure and has the exact functionality that we
needed, which made it an appealing option for us [4].

2.3.3 Array Micro-controller
When designing the system, we considered having more DSP capabilities so that we
could have greater on-board processing power. However, we realized that given our
application, we would only need a basic micro-controller with I2S and SPI capabilities.
On our array module, we would use the micro-controller to sample from multiple
microphones/ADCs and then communicate with the micro-controller on the central
processing hub. The ARM Cortex-M4 STM32F411CEU6 chip has all of these features
and was a more affordable option compared to many other micro-controllers.

2.4 Processing Hub
2.4.1 Central Micro-controller
Considering that expandability of our microphone array is one of its main features, we
needed to pick a micro-controller that has the flexibility to communicate with multiple
micro-controllers that would be onboard the microphone arrays. With expandability in

d =
V
f

�5

mind, this micro-controller also needs to be able to synchronize and pull sound data
from the multiple microphone arrays it is supporting, while also consuming low power as
we also want the system to be portable so ideally does not require a huge external
power supply.

Like the micro-controller we used for the microphone array, we decided to go with the
ARM Cortex-M4 STM32F411CEU6 chip. This micro-controller has up to 5 SPIs in
master and slave mode in full-duplex communication modes and 81 input/output (I/O)
pins with interrupt capability. There are also 11 timers: up to six 16-bit, two 32-bit timers
which would allow the central hub to keep track of the different sampling frequencies of
the different microphone arrays [5]. Because synchronization is essential for the
functionality of a large microphone array, we are limit by the number of timers that can
track the different sampling frequencies of each array module. Thus limiting the central
hub to communicate with up to 11 slave microphone arrays. As a result this micro-
controller will be able to keep track of the handle our synchronization algorithm, which
will be discussed in detail in the Section 3.

�6

3 Software Design
3.1 Sampling Frequency
The sampling frequency depends what application we are sampling the sound for and
the overall file size of the sound sample. Due to the importance scalability, we do not
want to generate sound files that are sampled at higher frequencies than necessary.
This issue can cause microphone arrays to become unsynchronized if they take too
long sending the sampled sound files back to the central micro-controller hub.

Because the maximum frequency that is audible by humans is 20 kHz, the sampling
frequency is set to 40 kHz to avoid aliasing based on the Nyquist sampling theorem [6].
 The sampling frequency is defined in software, making it easily adjustable depending
on the target sound source and application that needs to be ran on the collected
sample.

3.2 Synchronization Algorithm
There were many important factors to consider when designing the synchronization for
the microphone arrays, mainly how quickly can the sampling clocks synchronized and
how accurately can we get to within a 10% margin of error with respect to the master
clock. We also did not want the algorithm to increase the software complexity as well as
consume unnecessary hardware resources. Therefore, we decided on using a
Proportional Integral Derivative (PID) controller to handle the sampling clock
synchronization. A PID controller by characteristic has low complexity, yet has the ability
to automatically synchronize the sampling clocks via a feedback system. In theory, the
proposed synchronization algorithm should effectively handle any major sampling clock
offsets without hindering the system performance.

For our synchronization algorithm, we decided to use a serial peripheral interface (SPI)
as our communication protocol between the central micro-controller hub and the micro-
controllers on the microphone arrays. We also decided to just use the proportional
control, Kp, to keep the simplicity of our software implementation. To test the
performance of our algorithm, we emulated the sampling rate of the microphone arrays
by having the micro-controllers hold counters which represented sound samples given a
set sampling rate/frequency. The central micro-controller acted as the master and held
the absolute count and the clock that the slave micro-controllers synchronized with.
After the SPI communication is initialized, master controller sends an interrupt to slave
controllers to begin counting. The master controller starts counting right after sending
the interrupt, and continues counting for a set period after which the master controller
stops counting and sends another interrupt to the slave controllers to stop counting as
well. The slave controllers then sends over their counts to the master controller which
are then compared to the absolute count. The master controller compute the error and if
it was within 10%, which is the limit of noticeable difference given two sound samples,

�7

the master will keep the current sampling rate. If the error is greater than 10%, the
master multiples the error by a proportional value, Kp, as shown in (2).

(2)

We defined Kp to be 0.1 because it wasn’t large enough that a large error would cause
the an overshoot and a smaller error would still allow a noticeable adjustment in
performance. The master controller then adjusts the counting period with respect to the
output of the PID controller. In theory with multiple microphone arrays, the master
controller will sent interrupts to the slave controllers based on their adjusted sampling
frequency and storing different absolute counts for each slave controller. This in turn
synchronizes the sampling rate slave controllers with the clock on the master controller.
A flowchart of our synchronization algorithm can be seen in Figure 3 [7].

Figure 3: PID Synchronization Algorithm

�8

Figure 4: PID Calculation

�9

4 Design Challenges
4.1 Industrial Micro-controller
During our design process, we considered many micro-controllers with the features that
we needed for our application. We concerned ourselves more with how we would
optimize the final product, as opposed to the steps we would need to take to arrive at
that product. Due to this, we selected a more advanced and less user friendly micro-
controller to use. Our group was inexperienced with micro-controller programming, so
this greatly impeded our overall progress.

A better approach would have been to start with a more intuitive micro-controller, such
as one from the Atmel AVR family. After building a simple prototype, it would have been
easier to scale up, in terms of programming a more complex micro-controller and also
adding more arrays.

4.2 Miniature Parts to Assemble
Although having small microphone packages was a design goal that we had, it also
hindered our progress. Due to the size of the package, we weren’t able to use the
solder coil and solder iron to mount the package on the PCB. Instead, we were forced to
buy solder paste, which was difficult to use.

Instead, we should have bought digital MEMS microphones in order to test our project.
Because we were set on building the project with analog MEMS microphones and
ADC’s, we were blocked until those were ready. Similar to the micro-controller
challenges, we should have taken more incremental steps, such as buying digital
MEMS microphones, instead of trying to build the final product right from the beginning.

4.3 Properly Defining the Project Scope
One significant problem that we had was that throughout the duration of the project, our
goals for the final product were constantly changing. Initially, we had wanted to have
more on-board processing capabilities and we were going to have a peer-to-peer
network to accomplish this. We wanted to be able to perform some real-time processing
on the data before storing it. However, after discussing with our sponsor, we realized
that these features weren’t necessary. These constant pivots made it difficult for us to
decide on the hardware that we wanted, which slowed down the progress that we could
have made.

A better plan would have been to start with small, realistic goals and then adjust the
goals as they are met. Instead, we focused more on the final product and not the steps
that we would take to get there.

�10

5 Verifications
5.1 Voltage Regulator
We verified our voltage regulator by probing the voltage output using a voltmeter. We
supplied the circuit with 4 V up to 6 V using the DC power supply to emulate the voltage
output from the AAA batteries. We tested our voltage regulator by supplying 4 V, 5 V
and 6V and was about to read outputs of 3.28 V, 3.34 V, and 3.43 V respectively. We
supplied the voltage for a minute for each input and the regulator was able to maintain
the stated output voltages consistently; whereas, when we tested the design for our
initial buck converter, the voltage oscillated too vastly to have a consistent output.

5.2 Microphone Array
Although we only built a prototype of our microphone array on a development board, we
were still able to verify several aspects of that module. The microphone array should
have been able to read in data from each of its ADC’s at the proper sampling rate and
then communicate that data to the processing hub. We simulated the ADC output using
a waveform generator with a two square waves and found that our micro-controller was
able to sample the data properly from both waves, which we verified by outputting the
saved WAV files. We tested it further by modulating the frequency of the input waves
and the output from our micro-controller responded accordingly.

5.3 Software Requirements
The save functionality of the main micro-controller hub was verified by using the
onboard microphone from our development board to record audio and write that audio
as a WAV file onto an USB drive. We spoke into the onboard microphone at a fixed
distance each time and listened to the saved WAV file to make sure that speech was
clear and there was no noticeable distortion in the audio during the writing process.

�11

6 Cost Analysis
6.1 Labor

6.2 Parts

6.3 Grand Total

Name Hourly Rate Total Hours Invested Total Cost = Hourly
Rate x Total Hours

Invested x 2.5

Kenneth Zhang $30 10 $300.00

Sida Xiong $30 450 $33750.00

Thomas Kao $30 450 $33750.00

Total 900 $67800.00

Part Part Number Unit Cost Quantity Total Cost

ARM Micro-
controller

STM32F411CEU6 $6.22 10 $62.22

Development
Board

STM32F411-
DISCO

$15.95 1 $15.96

Analog
Microphone

InverSense
ICS-40720

$3.38 10 $33.98

ADC TI PCM1804 $5.20 10 $52.07

1.5 V AAA Battery Energizer EN92 $0.73 8 $5.82

0.1 uF Capacitors $0.24 25 $6.00

2.8 V 0.5 W Zener
Diode

$0.70 1 $0.70

BJT Transistor 2N4921G $0.60 1 $0.60

3 Ohms Resistor $2.36 1 $2.36

5 Ohms Resistor $2.58 1 $2.58

Total $182.29

Parts Labor Grand Total

$182.29 $67800.00 $67982.29

�12

7 Conclusion
7.1 Accomplishments
We were able to design a voltage regulator that output 3.3V within a 5% margin of error.
Our microphone array was mainly build on the development board that we purchased.
We were able to sample from two sources using a Waveform Generator, saving the
samples into two WAV files. A change in frequency of the generated wave matched a
change in pitch of the resulting sound sample which matches the change in frequency
of a human as they talk. During our demo, we were able to present our voltage regulator
working for a given voltage range.

7.2 Uncertainties
While we were mainly focusing on debugging our code for the micro-controller on the
microphone array, we are currently unsure of how quickly and accurately our
synchronization algorithm will perform. A large scale expandable microphone array
relies heavily on synchronizing the sampling frequency of all the arrays quickly and as
accurately as possible, otherwise producing incoherent sound samples.

7.3 Ethics
Our project follows the IEEE Code of Ethics with the following [10]:

3. “To be honest and realistic in stating claims or estimates based on available data.”
All the accomplishment stated above are based solely on results produced from our
verifiable result and have been disclosed in this document.

5. “To improve the understanding of technology; its appropriate application, and
potential consequences.”
The goal of our product is the provide a more modular and portable microphone array
that can provide sound samples for a variety of applications, with parameters fine-tuned
in software.

6. “To maintain and improve our technical competence and to undertake technological
tasks for others only if qualified by training or experience, or after full disclosure of
pertinent limitations”.
Design for our product has been undertaken only after we had a complete
understanding of the details concerning the the goals and limitations.

7. “To seek, accept, and offer honest criticism of technical work, to acknowledge and
correct errors, and to credit properly the contributions of others”.
This project has been reviewed by our Teaching Assistants, Professor, and our peers
from the Senior Design class. All resources used and results outlined in this document
are cited.

�13

7.4 Future Work
In the future, we would like to integrate and test our sampling software with purchased
digital microphones in order to verify that we are able to sample actual human speech.
After that, we would like to implement the system on our own hardware (e.g. the parts
we bought, and the PCBs we designed).

While the voltage regulator correctly outputs the defined voltage, we would like to
connect our batteries to the voltage regulator to test the functionality of the entire power
module. In addition, we still need to integrate the voltage regulator with the entire
system to make adjustments to supply 3.3 V to all parts of the system.

We would like to test our implementation of our communication protocol as well. First, it
would be beneficial to simulate the synchronization of sampling frequencies to see if it
converges and how the parameters should be set in (2) for it to converge quickly. After
that, we will test our implementation with two micro-controllers. Finally, we want to test
the synchronization between the central processing hub and multiple microphone
arrays.

Since the goal of this project was to build a scalable, modular design for a microphone
array, our final objective is to be able to scale up our system to include many
microphone arrays. Ideally, we would like to be able to handle thousands of
microphones with our system.

�14

References
[1] ieeexplore.ieee.org, “The huge microphone array”, 2017. [Online]. Available: http://
ieeexplore.ieee.org/document/736423/

[2] conforg.fr, “Transient acoustic analysis of a run-up of a car using a modular 4096
channel MEMS microphone array”, 2017. [Online]. Available: http://www.conforg.fr/
euronoise2015/proceedings/data/articles/000186.pdf

[3] invensense.com, “ICS-40720 Datasheet”, 2017. [Online]. Available: https://
www.invensense.com/products/analog/ics-40720/

[4] ti.com, “Full Differential Analog Input 24-bit, 192-kHz Stereo A/D Converter”, 2007.
[Online]. Available: http://www.ti.com/lit/ds/symlink/pcm1804.pdf

[5] st.com, “STM32F411xC, STM32F411xE Datasheet”, 2017. [Online]. Available: http://
www.st.com/content/ccc/resource/technical/document/datasheet/b3/a5/46/3b/b4/e5/4c/
85/DM00115249.pdf/files/DM00115249.pdf/jcr:content/translations/en.DM00115249.pdf

[6] berkeley.edu, “Aliasing”, 2017. [Online]. Available: http://redwood.berkeley.edu/
bruno/npb261/aliasing.pdf

[7] ieeexplore.ieee.org, "Sampling Clock Synchronization with PID controller for optical
OFDM systems”, 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/6737858/

[8] ti.com, “PCM1804”, 2017. [Online]. Available: http://www.ti.com/product/PCM1804

[9] utexas.edu, “Understanding PDM Digital Audio”, 2017. [Online]. Available: http://
users.ece.utexas.edu/~bevans/courses/rtdsp/lectures/10_Data_Conversion/
AP_Understanding_PDM_Digital_Audio.pdf

[10] ieeexplore.ieee.org, “IEEE Code of Ethics”, 2017. [Online]. Available: http://
www.ieee.org/about/corporate/governance/p7-8.html

�15

http://ieeexplore.ieee.org/document/736423/
http://ieeexplore.ieee.org/document/736423/
http://www.conforg.fr/euronoise2015/proceedings/data/articles/000186.pdf
http://www.conforg.fr/euronoise2015/proceedings/data/articles/000186.pdf
http://www.ti.com/lit/ds/symlink/pcm1804.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/b3/a5/46/3b/b4/e5/4c/85/DM00115249.pdf/files/DM00115249.pdf/jcr:content/translations/en.DM00115249.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/b3/a5/46/3b/b4/e5/4c/85/DM00115249.pdf/files/DM00115249.pdf/jcr:content/translations/en.DM00115249.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/b3/a5/46/3b/b4/e5/4c/85/DM00115249.pdf/files/DM00115249.pdf/jcr:content/translations/en.DM00115249.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/b3/a5/46/3b/b4/e5/4c/85/DM00115249.pdf/files/DM00115249.pdf/jcr:content/translations/en.DM00115249.pdf
http://ieeexplore.ieee.org/document/6737858/

Appendix A: Requirements & Verification
Power Supply (10pts)

Sensory Array Module (20pts)

Requirements Verifications

Voltage Source (10pts):

Provides 3.3 V +/- 0.3V given a 4 - 6 V
input source

Using a voltmeter to check the output of
our voltage regular, verifying whether the
voltage output is within 3.0V up to 3.6V.

Requirements Verifications

Digital Microphones (7pts):

Able to detect all frequencies of human
voice (80 Hz - 20kHz)

1. Play audio recordings of known
frequencies from 80Hz - 20kHz at
amplitude of 70 - 75 decibels (normal
human speech)

2. Check the output of the ADC using the
oscilloscope to verify that the
waveform generated has a frequency
corresponding to the sound we played
(80hz - 20kHz) and with wave
amplitude 1.0V +/- 0.2V.

Microphone Array (13pts on the PCB /
10pts on the Discovery Board):

The micro-controller will be able to sample
from from two external I/O, generating two
WAV file for each input

Test 1 (7pts):
1. Generate a 16kHz, 5Vpp wave on the

waveform generator into two I/O pins
on the Discovery Board

2. Output and save two WAV file onto the
USB. Verifying by plugging the USB
into the computer to play the sound.

Test 2 (13pts):
1. Play an audio recording between

80Hz - 20kHz (normal human speech)
2. The two stereo microphones should

record the sound and generate two
WAV file (10pts on the Discovery
Board / 13pts on the PCB)

3. Verify the two sound files by plugging
the USB into the computer and playing
back the sound

�16

Processing System (20pts)

Requirements Verifications

Saving Sound Data (10pts Max):

Save sound data into WAV files into an
external storage - 7pts for saving into USB
on the Discovery Board / 10pts for saving
onto SD on the PCB

1. Recording a sound file from the
onboard microphone (for Discovery
Board) or a microphone (for PCB)

2. Saving the sound file into a WAV file,
verifying it by plugging the external
storage into the computer and playing
the audio back

Synchronizing Two Microphone Arrays
(10pts):

WAV files generated by the two
microphone arrays are in sync

Compare the two WAV files (one file from
each microphone array) using a C# script
that will calculate an average per-sample
difference. Every 10th sample from each
file will be compared and if the difference
is within a 7-10% error, it will be
considered in sync.

�17

Appendix B: Central Hub Schematic

Figure 5: Circuit schematic of central processing hub

�18

Appendix C: Microphone Array Schematic

Figure 6: Circuit schematic for microphone array

�19

