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Abstract

Acoustic scene analysis is a discipline that aims to process and interpret, from different 
perspectives, the acoustic information diffused in the environment. The primary method 
for obtaining this environmental sound data is to use a microphone array. The idea of 
large scale microphone arrays have existed since 1994. H.F Silverman of Brown Univ. 
and his team designed a 512-microphone array system but faced several limitations in 
portability and scalability, due to the hardware at that time. In this document, we present 
the design for a scalable and portable multi-microphone array. The central hub 
communicates with multiple microphone arrays, synchronizing and storing the collected 
sound data onto external storage. This document provides details for both the hardware 
and software design of the system and verification of finished modules.
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1   Introduction
1.1   Purpose
In 1994, scientists at Rutgers and Brown set out to build a versatile research platform 
for experimenting with a large microphone array. They were able to put together an 
array of 512 microphones, but due to the available technology, the project required an 
excessive amount of hardware, rendering it difficult to setup and use [1]. With the 
introduction of MEMS microphones and other advancements in hardware technology, 
recent systems have been able to improve their microphone density, detection 
sensitivity, and processing capabilities. Most notably, an array of 4096 microphones was 
built in 2014, by an Norwegian engineering firm, Sorama [2].

Our goal for this project was to create a system that could be used in a variety of 
environments while still providing fine detection capabilities. To accomplish this, we 
chose a modular design with individual microphone array modules that could be 
connected to the central hub in different ways based on the user’s design choices. The 
ability to scale and reconfigure the system gives the user flexibility in where they can 
implement it. Our intent was to have the system take in the sound data from the array 
modules and save that data to a WAV file for future processing. To accomplish this, the 
system would consist of microphone array modules, which would serve as the front-end 
detection stage, and a central processing hub, which would synchronize the collection 
of sound data and convert it into the WAV file format.

1.2   Objectives
1.2.1   Goals and Benefits

• Easily reconfigurable parameters in software

• Portable and low power

• Expandable to fit application requirements
1.2.2   Functions and Features

• Microphone array modules that can be added to the system and rearranged based 
on application

• Processing hub that synchronizes the sound data and stores sound sampling into 
external storage
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2   Hardware Design
2.1   Block Diagram
Our design consists of three main modules, as seen in Figure 1: the power supply, 
microphone array modules, and central processing hub. The power system supplies a 
steady voltage of 3.3 V to the entire system. The microphone array module consists of 4 
analog MEMs microphones, 2 ADCs, and a micro-controller, as seen in Figure 2. These 
array modules connect to the central processing hub, which consists of one micro-
controller and a USB drive, as seen in Figure 3.

Figure 1: High level diagram of entire system
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Figure 2: Block diagram of microphone array module

Figure 3: Block diagram of processing hub
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2.2   Power System
2.2.1   Voltage regulator
In order to ensure a steady input voltage of 3.3 V to the system, we designed and built 
our own linear voltage regulator. Initially, we planned on using a buck converter, since it 
is more efficient than a linear regulator, which dissipates extra power as heat. However, 
we decided that the efficiency wasn’t a huge concern for our application and we chose 
the linear regulator. The circuit consists of a MOSFET, a 2.8 V zener diode, and several 
resistors. With this voltage regulator, we were able to handle input voltages of 4 V - 6 V 
and output 3.3 V with deviations of up to .1 V. The current drawn from our voltage 
regulator reached a maximum of .3 A. The design for the voltage regulator is shown in 
Figure 4.

Figure 4: Voltage regulator schematic

2.2.2   Battery
Given our available input range for the voltage regulator, we decided to use standard 
1.5 V AAA batteries. We connected them in series to produce a voltage of 4.5 V and 
then used that as the input to our voltage regulator. We decided against using a lithium 
ion battery because of the inherent safety hazards, such as the flammable electrolyte. 
AAA batteries were safer and suited our needs just as well as lithium ion batteries.

2.3.  Microphone Array Module
For the microphone array module, we had several design decisions to make. The first 
consideration was how many microphones to put in each array. With more microphones 
placed in the array, the array can have more sensitive detection capabilities. This is 
because when microphones are placed closer together, they can detect shorter 
wavelengths. Ultimately, due to constraints from the parts that we chose for the module, 
we decided to have 4 microphones per array, which is enough for our applications. As 
seen from (1), where V is the speed of sound, f is the frequency of human speech, and 
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d is the distance between microphones. We set V to 340.29 m/s and f to 255 Hz, which 
is around the upper average frequency of human speech, which results in d comes out 
to 1.3344 m. Our microphones are placed much closer than this, allowing for even 
higher frequencies to be captured. With four microphones, we decided that the best 
configuration is a square. In this way, the array can detect symmetrically from every 
direction in a 2D plane.

�    (1)

2.3.1   Analog MEMS Microphones
We chose to use analog microphones because they are available in smaller packages 
than digital microphones. Size is such an important consideration for our microphone 
array modules, so we decided that using analog microphones would give us more 
flexibility with the design choices.

For our array, we decided to use the Invensense ICS-40720 analog MEMS 
microphones. These microphones have a frequency response from 75 Hz to 20 kHz, 
which encompasses 99.7% of the frequencies of the human voice. In addition, they are 
available in small 4.0 mm x 3.0 mm x 1.2 mm packages, which allows us to scale down 
the modules to a very small size [3].

2.3.2   Analog - Digital Converter (ADC)
Because we decided to use analog MEMS microphones, we needed to choose ADCs 
as well. There were many ADCs with advanced DSP functionalities built in, but they 
required much more configuration. To reduce the complexity, we chose to use the TI 
PCM 1804 ADC. This ADC is simple to configure and has the exact functionality that we 
needed, which made it an appealing option for us [4].

2.3.3   Array Micro-controller
When designing the system, we considered having more DSP capabilities so that we 
could have greater on-board processing power. However, we realized that given our 
application, we would only need a basic micro-controller with I2S and SPI capabilities. 
On our array module, we would use the micro-controller to sample from multiple 
microphones/ADCs and then communicate with the micro-controller on the central 
processing hub. The ARM Cortex-M4 STM32F411CEU6 chip has all of these features 
and was a more affordable option compared to many other micro-controllers.

2.4   Processing Hub
2.4.1   Central Micro-controller
Considering that expandability of our microphone array is one of its main features, we 
needed to pick a micro-controller that has the flexibility to communicate with multiple 
micro-controllers that would be onboard the microphone arrays. With expandability in 

d =
V
f
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mind, this micro-controller also needs to be able to synchronize and pull sound data 
from the multiple microphone arrays it is supporting, while also consuming low power as 
we also want the system to be portable so ideally does not require a huge external 
power supply.

Like the micro-controller we used for the microphone array, we decided to go with the 
ARM Cortex-M4 STM32F411CEU6 chip. This micro-controller has up to 5 SPIs in 
master and slave mode in full-duplex communication modes and 81 input/output (I/O) 
pins with interrupt capability. There are also 11 timers: up to six 16-bit, two 32-bit timers 
which would allow the central hub to keep track of the different sampling frequencies of 
the different microphone arrays [5]. Because synchronization is essential for the 
functionality of a large microphone array, we are limit by the number of timers that can 
track the different sampling frequencies of each array module. Thus limiting the central 
hub to communicate with up to 11 slave microphone arrays. As a result this micro-
controller will be able to keep track of the handle our synchronization algorithm, which 
will be discussed in detail in the Section 3.
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3   Software Design
3.1   Sampling Frequency
The sampling frequency depends what application we are sampling the sound for and 
the overall file size of the sound sample. Due to the importance scalability, we do not 
want to generate sound files that are sampled at higher frequencies than necessary. 
This issue can cause microphone arrays to become unsynchronized if they take too 
long sending the sampled sound files back to the central micro-controller hub.

Because the maximum frequency that is audible by humans is 20 kHz, the sampling 
frequency is set to 40 kHz to avoid aliasing based on the Nyquist sampling theorem [6]. 
 The sampling frequency is defined in software, making it easily adjustable depending 
on the target sound source and application that needs to be ran on the collected 
sample.

3.2   Synchronization Algorithm
There were many important factors to consider when designing the synchronization for 
the microphone arrays, mainly how quickly can the sampling clocks synchronized and 
how accurately can we get to within a 10% margin of error with respect to the master 
clock. We also did not want the algorithm to increase the software complexity as well as 
consume unnecessary hardware resources. Therefore, we decided on using a 
Proportional Integral Derivative (PID) controller to handle the sampling clock 
synchronization. A PID controller by characteristic has low complexity, yet has the ability 
to automatically synchronize the sampling clocks via a feedback system. In theory, the 
proposed synchronization algorithm should effectively handle any major sampling clock 
offsets without hindering the system performance.

For our synchronization algorithm, we decided to use a serial peripheral interface (SPI) 
as our communication protocol between the central micro-controller hub and the micro-
controllers on the microphone arrays. We also decided to just use the proportional 
control, Kp, to keep the simplicity of our software implementation. To test the 
performance of our algorithm, we emulated the sampling rate of the microphone arrays 
by having the micro-controllers hold counters which represented sound samples given a 
set sampling rate/frequency. The central micro-controller acted as the master and held 
the absolute count and the clock that the slave micro-controllers synchronized with. 
After the SPI communication is initialized, master controller sends an interrupt to slave 
controllers to begin counting. The master controller starts counting right after sending 
the interrupt, and continues counting for a set period after which the master controller 
stops counting and sends another interrupt to the slave controllers to stop counting as 
well. The slave controllers then sends over their counts to the master controller which 
are then compared to the absolute count. The master controller compute the error and if 
it was within 10%, which is the limit of noticeable difference given two sound samples, 
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the master will keep the current sampling rate. If the error is greater than 10%, the 
master multiples the error by a proportional value, Kp, as shown in (2).  

(2)

We defined Kp to be 0.1 because it wasn’t large enough that a large error would cause 
the an overshoot and a smaller error would still allow a noticeable adjustment in 
performance. The master controller then adjusts the counting period with respect to the 
output of the PID controller. In theory with multiple microphone arrays, the master 
controller will sent interrupts to the slave controllers based on their adjusted sampling 
frequency and storing different absolute counts for each slave controller. This in turn 
synchronizes the sampling rate slave controllers with the clock on the master controller. 
A flowchart of our synchronization algorithm can be seen in Figure 3 [7].

Figure 3: PID Synchronization Algorithm
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Figure 4: PID Calculation
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4   Design Challenges
4.1   Industrial Micro-controller
During our design process, we considered many micro-controllers with the features that 
we needed for our application. We concerned ourselves more with how we would 
optimize the final product, as opposed to the steps we would need to take to arrive at 
that product. Due to this, we selected a more advanced and less user friendly micro-
controller to use. Our group was inexperienced with micro-controller programming, so 
this greatly impeded our overall progress.

A better approach would have been to start with a more intuitive micro-controller, such 
as one from the Atmel AVR family. After building a simple prototype, it would have been 
easier to scale up, in terms of programming a more complex micro-controller and also 
adding more arrays.

4.2   Miniature Parts to Assemble
Although having small microphone packages was a design goal that we had, it also 
hindered our progress. Due to the size of the package, we weren’t able to use the 
solder coil and solder iron to mount the package on the PCB. Instead, we were forced to 
buy solder paste, which was difficult to use.

Instead, we should have bought digital MEMS microphones in order to test our project. 
Because we were set on building the project with analog MEMS microphones and 
ADC’s, we were blocked until those were ready. Similar to the micro-controller 
challenges, we should have taken more incremental steps, such as buying digital 
MEMS microphones, instead of trying to build the final product right from the beginning.

4.3   Properly Defining the Project Scope
One significant problem that we had was that throughout the duration of the project, our 
goals for the final product were constantly changing. Initially, we had wanted to have 
more on-board processing capabilities and we were going to have a peer-to-peer 
network to accomplish this. We wanted to be able to perform some real-time processing 
on the data before storing it. However, after discussing with our sponsor, we realized 
that these features weren’t necessary. These constant pivots made it difficult for us to 
decide on the hardware that we wanted, which slowed down the progress that we could 
have made.

A better plan would have been to start with small, realistic goals and then adjust the 
goals as they are met. Instead, we focused more on the final product and not the steps 
that we would take to get there.
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5   Verifications
5.1   Voltage Regulator
We verified our voltage regulator by probing the voltage output using a voltmeter. We 
supplied the circuit with 4 V up to 6 V using the DC power supply to emulate the voltage 
output from the AAA batteries. We tested our voltage regulator by supplying 4 V, 5 V 
and 6V and was about to read outputs of 3.28 V, 3.34 V, and 3.43 V respectively. We 
supplied the voltage for a minute for each input and the regulator was able to maintain 
the stated output voltages consistently; whereas, when we tested the design for our 
initial buck converter, the voltage oscillated too vastly to have a consistent output.

5.2   Microphone Array
Although we only built a prototype of our microphone array on a development board, we 
were still able to verify several aspects of that module. The microphone array should 
have been able to read in data from each of its ADC’s at the proper sampling rate and 
then communicate that data to the processing hub. We simulated the ADC output using 
a waveform generator with a two square waves and found that our micro-controller was 
able to sample the data properly from both waves, which we verified by outputting the 
saved WAV files. We tested it further by modulating the frequency of the input waves 
and the output from our micro-controller responded accordingly.

5.3   Software Requirements
The save functionality of the main micro-controller hub was verified by using the 
onboard microphone from our development board to record audio and write that audio 
as a WAV file onto an USB drive. We spoke into the onboard microphone at a fixed 
distance each time and listened to the saved WAV file to make sure that speech was 
clear and there was no noticeable distortion in the audio during the writing process.
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6   Cost Analysis
6.1   Labor

6.2   Parts

6.3   Grand Total

Name Hourly Rate Total Hours Invested Total Cost = Hourly 
Rate x Total Hours 

Invested x 2.5

Kenneth Zhang $30 10 $300.00

Sida Xiong $30 450 $33750.00

Thomas Kao $30 450 $33750.00

Total 900 $67800.00

Part Part Number Unit Cost Quantity Total Cost

ARM Micro-
controller

STM32F411CEU6 $6.22 10 $62.22

Development 
Board

STM32F411-
DISCO

$15.95 1 $15.96

Analog 
Microphone

InverSense 
ICS-40720

$3.38 10 $33.98

ADC TI PCM1804 $5.20 10 $52.07

1.5 V AAA Battery Energizer EN92 $0.73 8 $5.82

0.1 uF Capacitors $0.24 25 $6.00

2.8 V 0.5 W Zener 
Diode

$0.70 1 $0.70

BJT Transistor 2N4921G $0.60 1 $0.60

3 Ohms Resistor $2.36 1 $2.36

5 Ohms Resistor $2.58 1 $2.58

Total $182.29

Parts Labor Grand Total

$182.29 $67800.00 $67982.29
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7   Conclusion
7.1   Accomplishments
We were able to design a voltage regulator that output 3.3V within a 5% margin of error. 
Our microphone array was mainly build on the development board that we purchased. 
We were able to sample from two sources using a Waveform Generator, saving the 
samples into two WAV files. A change in frequency of the generated wave matched a 
change in pitch of the resulting sound sample which matches the change in frequency 
of a human as they talk. During our demo, we were able to present our voltage regulator 
working for a given voltage range.

7.2   Uncertainties
While we were mainly focusing on debugging our code for the micro-controller on the 
microphone array, we are currently unsure of how quickly and accurately our 
synchronization algorithm will perform. A large scale expandable microphone array 
relies heavily on synchronizing the sampling frequency of all the arrays quickly and as 
accurately as possible, otherwise producing incoherent sound samples.  

7.3   Ethics
Our project follows the IEEE Code of Ethics with the following [10]:

3. “To be honest and realistic in stating claims or estimates based on available data.”
All the accomplishment stated above are based solely on results produced from our 
verifiable result and have been disclosed in this document.

5. “To improve the understanding of technology; its appropriate application, and 
potential consequences.”
The goal of our product is the provide a more modular and portable microphone array 
that can provide sound samples for a variety of applications, with parameters fine-tuned 
in software.

6. “To maintain and improve our technical competence and to undertake technological 
tasks for others only if qualified by training or experience, or after full disclosure of 
pertinent limitations”.
Design for our product has been undertaken only after we had a complete 
understanding of the details concerning the the goals and limitations.

7. “To seek, accept, and offer honest criticism of technical work, to acknowledge and 
correct errors, and to credit properly the contributions of others”.
This project has been reviewed by our Teaching Assistants, Professor, and our peers 
from the Senior Design class. All resources used and results outlined in this document 
are cited.
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7.4   Future Work
In the future, we would like to integrate and test our sampling software with purchased 
digital microphones in order to verify that we are able to sample actual human speech. 
After that, we would like to implement the system on our own hardware (e.g. the parts 
we bought, and the PCBs we designed). 

While the voltage regulator correctly outputs the defined voltage, we would like to 
connect our batteries to the voltage regulator to test the functionality of the entire power 
module. In addition, we still need to integrate the voltage regulator with the entire 
system to make adjustments to supply 3.3 V to all parts of the system.

We would like to test our implementation of our communication protocol as well. First, it 
would be beneficial to simulate the synchronization of sampling frequencies to see if it 
converges and how the parameters should be set in (2) for it to converge quickly. After 
that, we will test our implementation with two micro-controllers. Finally, we want to test 
the synchronization between the central processing hub and multiple microphone 
arrays.

Since the goal of this project was to build a scalable, modular design for a microphone 
array, our final objective is to be able to scale up our system to include many 
microphone arrays. Ideally, we would like to be able to handle thousands of 
microphones with our system.
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Appendix A: Requirements & Verification
Power Supply (10pts)

Sensory Array Module (20pts)

Requirements Verifications

Voltage Source (10pts):

Provides 3.3 V +/- 0.3V given a 4 - 6 V 
input source

Using a voltmeter to check the output of 
our voltage regular, verifying whether the 
voltage output is within 3.0V up to 3.6V.

Requirements Verifications

Digital Microphones (7pts):

Able to detect all frequencies of human 
voice (80 Hz - 20kHz)

1. Play audio recordings of known 
frequencies from 80Hz - 20kHz at 
amplitude of 70 - 75 decibels (normal 
human speech)

2. Check the output of the ADC using the 
oscilloscope to verify that the 
waveform generated has a frequency 
corresponding to the sound we played 
(80hz - 20kHz) and with wave 
amplitude 1.0V +/- 0.2V.

Microphone Array (13pts on the PCB / 
10pts on the Discovery Board):

The micro-controller will be able to sample 
from from two external I/O, generating two 
WAV file for each input 

Test 1 (7pts):
1. Generate a 16kHz, 5Vpp wave on the 

waveform generator into two I/O pins 
on the Discovery Board

2. Output and save two WAV file onto the 
USB. Verifying by plugging the USB 
into the computer to play the sound.

Test 2 (13pts):
1. Play an audio recording between 

80Hz - 20kHz (normal human speech)
2. The two stereo microphones should 

record the sound and generate two 
WAV file (10pts on the Discovery 
Board / 13pts on the PCB)

3. Verify the two sound files by plugging 
the USB into the computer and playing 
back the sound
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Processing System (20pts)

Requirements Verifications

Saving Sound Data (10pts Max):

Save sound data into WAV files into an 
external storage - 7pts for saving into USB 
on the Discovery Board / 10pts for saving 
onto SD on the PCB

1. Recording a sound file from the 
onboard microphone (for Discovery 
Board) or a microphone (for PCB)

2. Saving the sound file into a WAV file, 
verifying it by plugging the external 
storage into the computer and playing 
the audio back

Synchronizing Two Microphone Arrays 
(10pts):

WAV files generated by the two 
microphone arrays are in sync 

Compare the two WAV files (one file from 
each microphone array) using a C# script 
that will calculate an average per-sample 
difference. Every 10th sample from each 
file will be compared and if the difference 
is within a 7-10% error, it will be 
considered in sync.
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Appendix B: Central Hub Schematic

Figure 5: Circuit schematic of central processing hub
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Appendix C: Microphone Array Schematic

Figure 6: Circuit schematic for microphone array
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