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Abstract 

The Scrim Light is a device that can provide a completely flexible and customizable lighting setup for 

users. By altering the brightness and color temperature through the onboard user interface, the user 

can create a profile for their specific application. The device provides several preset profiles, such as a 

gradient fading from one end to the other, or from the center outwards. Additionally, the user can 

program in their own customized modes for later usage. Finally, the device was implemented in a 

cordless, battery powered housing, allowing for the light to be conveniently used in the desired studio 

setting.  
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1. Introduction 

Photography lighting is a complicated and many-faceted issue, often requiring thousands of dollars in 

equipment to achieve the desired lighting effect. Rick Kessinger, a local photographer in Bloomington, 

approached the 445 students with a problem; he was attempting to photograph automobiles in a 

particular fashion, and therefore needed a particular lighting setup in order to achieve that.  

When photographing cars, light would typically need to be reflected off surfaces known as scrims in 

order to deliver a professional look and finish to the final product. Complicated setups often arise when 

the desired result looks to highlight the contours and shapes that make the vehicle unique, and small 

studios typically cannot afford the cost.  

Rick proposed a prototype solution: The same effects can be achieved via long-exposure shots, but 

would require an appropriate lighting mechanism that can produce the specified gradient directly. His 

initial design consisted of a wall-powered LED strip which he could coat in a particular way to produce 

the gradient. This, however, was not an appropriate solution, as this would only produce a single non-

adjustable gradient and made transportation around the studio very difficult.   

Our proposed solution is a light that gives much more control to the user by allowing them to produce 

different gradients, such as fading from one end to the other, or from the center out and vice versa. The 

user has the ability to vary the brightness, temperature, and intensity of the light, adjust the starting 

position and profile of the gradient, and individually group LEDs together and adjust their brightness to 

produce a well-defined custom profile. The user is also able to store their current profile for non-volatile 

retention and later use as a preset mode. One of the more important parts of this solution is that the 

device is cordless and battery powered, as this allows for increased mobility when using the device in 

the studio. Our design is also modular, allowing the user to easily replace any malfunctioning LED unit 

and add more if the extra space is properly accommodated.  

Overall, we were able to produce an intuitive and simple to use device that met the requirements that 

were originally set out. Our design for a custom bus protocol functioned as planned and enabled the 

device to operate with no visual latency. Some non-essential components of our design, however, failed 

to fully meet requirements. 



2 
 

1.1 Block Diagram 

 

Figure 1.1: Overall design block diagram 

1.1.1 Li-ion Battery with On-Pack Protection and Charger 

Due to the high-current nature of the application (80 LEDs, each driven at a maximum forward current 

of 60 mA) and the portability requirements set forth by the end-user, Lithium-Ion cells were chosen as 

the ideal source of on-board power. The life-time of the device was set out to be at least 45 minutes, 

discharging at nominal 3.7 V at a discharge current not exceeding 5.5 A. We chose to purchase an 

industry-standard Li-Ion pack housing 3 cells with on-pack protection and an overall capacity of 7800 

mAh. 

We also chose an industry standard charger which is specifically designed for usage with our battery 

pack. The charger is able to charge the battery to full safely in 8 hours. It also ensures that the battery 

current draw drops dramatically before reaching any critically low voltage levels, which promotes higher 

cycle life for the Li-ion cells by maintaining a 50-65% depth of discharge. [2] 
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1.1.2 Voltage Regulator 

The Flash memory (Serial NOR Flash) has a maximum input rating of 3.6 V, and the operating range of 

the device exceeds this requirement. To keep the cost down (not opting for a bigger memory or 

different type), the input range was met by a simple LT1763-3.3 regulator circuit. Additionally, we are 

using the regulator output to power the microcontroller so as to not over-supply the SPI communication 

into the flash, and for a more stable and decoupled operating voltage. 

1.1.3 Flash Memory 

A flash memory is the most readily available and low-cost non-volatile, rewriteable storage solution. A 

large part of the functionality of the device relies on the ability to retain and rewrite user profiles, and it 

is best to meet these with a low-cost, high data-retention flash memory. To properly store the profiles, 

the flash memory was chosen to have at least 1.6 kB, which stores 160 bytes per profile, and at least 10 

profiles.  

1.1.4 User Interface Elements 

The LCD display communicates the current settings and mode selected to the user, and must be able to 

display at least 20 characters per line with 2 lines with backlighting. The LCD screen would be facing a 

different direction from the light, and its brightness is extremely low compared to that of the LED strip, 

so there will be no light contamination during operation. We understand, however, that some very light 

sensitive photography may warrant a stronger control on the screen, and as such we leave the time-out 

options to be set by the user. 

The main handle also houses two buttons to cycle through the list of stored profiles, as well as a button 

to save the current profile.  

In order to allow the user to intuitively control the brightness and color temperature of individual LEDs 

or set of LEDs, the device houses two rotary encoders (knobs) alongside the buttons described above. 

These knobs are capable of being pushed, like a button, to toggle their functionality and provide the 

user with more control. One knob controls adjustments of a selection window that dictates what LED or 

LED group is being targeted for adjustments in brightness or temperature, and the window size and 

window position can both be changed by this same knob. Similarly, the other knob controls the 

brightness and color temperature of the targets, and this enables the user to create a variety of 

unrestricted lighting patterns. 

1.1.5 ATmega644P Microcontroller 

This particular microcontroller was chosen because of the number of input and output pins required for 

our user interface elements as well as communication with the MBus protocol. Additionally, we needed 

the JTAG programming interface, as well as SPI communication with the flash memory.  

The primary functionality of the microcontroller is to communicate with the LEDs, and send different 

addresses and values according to inputs from the user interface. It is also used to interface with the 

flash memory so that profiles can be loaded. 
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1.1.6 Custom Bus Protocol and LED Driver: MBus Modules 

In order for the device to change without latency in response to the user interface, a custom bus 

protocol, known as MBus, was designed to operate at a minimum of 135 kHz. This is the primary design 

challenge within this project, and will be described in further detail in the design section. Additionally, 

each module contains an LED driver designed for operation with the custom bus protocol. This LED 

driver must provide up to a maximum of 60 mA of current to the LED, as well as provide linear steps of 

current as the digital brightness values communicated through the bus increase.   
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2 Design 
The primary design choices were made in the design of the MBus protocol, the user interface, and the 

LED driver. This section will primarily focus on these design heavy blocks of the device, as the other 

blocks are more focused on purchasing parts that fit our requirements.    

2.1 Design Procedures 

2.1.1 Custom Bus Protocol: MBus 

In order for our device to operate properly, it was determined that we would need a communication 

protocol that allowed for individually addressable LED modules to operate at a frequency that was high 

enough to eliminate visual latency when changing the profile of the light. We define unnoticeable 

latency to be a total latency less than the minimum visual latency of human vision (approximately 8 ms). 

This would mean that, with color temperature functionality added, the bus must be able to 

communicate a total of 120 bytes of data (3 bytes per LED module) within 8 ms. This requirement yields 

a total number of clock cycles (including acknowledgements and data alignment cycles) of  

120𝑥8 + 120 = 1080 𝑐𝑦𝑐𝑙𝑒𝑠 

We can then obtain the minimum clock speed the bus needs to operate at as 

1080

. 008
=  135 𝑘𝐻𝑧 

Note that this clock speed is well above the typical I2C transfer speed (100 KHz). For this reason, we 

decided to opt out of using I2C as the bus communication protocol, and instead implement our own 

protocol and bus controller to seamlessly integrate with the LED Driver.  

2.1.2 User Interface 

The primary decisions for the user interface were made based on the best and most intuitive way to 

perform operations on the light. For that, we determined that it was necessary to have an LCD display, 

and several buttons and knobs to change the light. The LCD display was chosen because it is the most 

direct way to indicate to the user what state the light is currently in. The information it would provide is 

the current profile of the light, current brightness level, and save status. Buttons are an easy, tactile 

form of interaction with the light, and the knobs provide an intuitive method of adjusting the brightness, 

temperature, and window position and size. 

We note here that the display element of the user interface did not function properly in the final build, 

and a work-around for displaying information was instead implemented as described below in section 

2.2.2. 
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2.1.3 LED Driver 

In order for the custom bus protocol to properly communicate brightness to the LEDs, it was necessary 

to create a system which allowed us to control the current driving an LED based on an 8-bit brightness 

value. We chose to use a BJT as it can act as a voltage controlled current source in the active mode. We 

also chose to use an R-2R ladder as a simple DAC because each module needed to have two of these LED 

drivers, and using an R-2R ladder would significantly reduce the cost of a single module while still 

providing the functionality we needed. We also needed to limit the current to the LED to a maximum of 

60 mA, and provide linear steps in current as the brightness value changed. 

2.2 Design Details 

2.2.1 Custom Bus Protocol: MBus 

The protocol is very similar to I2C, with some modifications as follows: 

- There is no start condition. A start condition is effectively assumed automatically following a 

stop condition (note that this means the master cannot sleep the bus). 

- The bus is write-only. Data flow modifiers were removed from the communication protocol, and 

the SCL line is solely controlled by the master (there can be no clock stretching). 

- The bus is application specific, and as such does not support multiple masters and is not limited 

in speed by the masters/slaves it supports.  

- The bus supports multiple-slave addressing and variable-size data streams. The application 

benefits greatly from allowing the brightness of multiple LEDs to be changed concurrently rather 

than in repeated fast succession, and leaving the data stream open for subsequent data 

removes the need for the bus to re-initiate communication by re-addressing the modules. 

- The bus has a third line – Data Enable. This line allows the master to determine when the data 

stream terminates and closes. 

 

 

A schematic of the LED module (MBus controller together with the LED drivers) can be seen in Figure 

2.2. Note that in order to provide color temperature functionality, it was necessary to cascade two of 

the serial input parallel output registers together, and attach an LED driver to each. Thus, when wanting 

to communicate data to both LEDs, a 16-bit value would need to be sent along with the address of the 

module, and no particular address exists for each individual LED. A simulation waveform of the design in 

SystemVerilog can be seen in Figure 2.1. The simulation shows the addressing of two modules 

(addresses 01010101 and 10101010 to show that no aliasing effects occur) and their respective 

acknowledgements at the stop conditions. Note that the initialization of the bus causes a HIGH on SDA 

to be clocked at the start of the waveform. 
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Figure 2.1 SystemVerilog Simulation of MBus Protocol 

 

2.2.2 User Interface 

The user interface primarily interfaces with the microcontroller so that the values of the LEDs can be 

altered depending on the inputs received from the buttons and knobs. A schematic is shown in Figure 

2.3 depicting the connections of the buttons, knobs, and LCD display to the microcontroller, alongside 

the MBus and JTAG setups and the flash memory. The pins are connected to female headers to allow for 

interfacing with the UI elements. The LCD display is connected to a Molex flat flex cable connector. 

The primary design work was done in software. In order to make sure that the signals from the user 

interface were properly received, it was necessary to de-bounce the inputs from the buttons and knobs 

to ensure that only a single correctly-identified interrupt was received when either were used. A 

hierarchy for the interrupts from the user interface was not necessary; CPU time for each service routine 

was itself interruptible, and as such poses no need for a preset hierarchy.   

After experimentally determining the proper strength for redundancy checks during de-bouncing and 

ensuring that the interrupts were being received as expected, we needed to design ways for the user to 

understand how the light was operating when using the interface elements without the LCD display. As 

such, we incorporated some sequences for the light to perform when changing between modes. A list of 

the indication displays can be seen in the table below. 
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Table 1 Indication Displays 
Power-On/Initialization All modules are turned on/off in quick succession 

down the length of the device. If the flash 
memory passes an integrity check, the end of the 
succession is noted by a blue temperature for the 
entire device (red if failed). 

Knob Function Change: Adjusting Brightness All modules are flashed on/off twice in 1 second. 

Knob Function Change:  Adjusting Color 
Temperature 

All modules are alternated between 3000K and 
5700K twice in 2 seconds. 

Knob Function Change:  Adjusting Window Size All modules turn on in succession, with the center 
of the device lighting first and extending to the 
ends before turning off while returning back to 
the center. 

Knob Function Change: Adjusting Window 
Position 

All modules are turned on/off in a sliding fashion 
down the length of the device and back. 

Navigating Away With Unsaved Changes All modules are turned on/off at 3000K (red) 
twice in 1 second. 

Save Successful All modules are turned on/off at 5700K twice in 1 
second  

Save Failed All modules are turned on/off at 3000K twice in 1 
second.  

 

A software library was designed to interface with the flash memory according to its specifications in the 

data sheet. This allowed us to store and load profiles from memory. Two of the buttons allowed the user 

to cycle up and down through the list of 8 profiles, with 4 of them being preset as per the end-user’s 

request. The third button saves the profile over the current one. As noted above, when attempting to 

switch away from an unsaved profile, the light will flash in a certain sequence, warning the user that 

they are about to switch away from the profile. If the user attempts to switch away again, the light will 

switch profiles without saving. 
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Figure 2.2 MBus Controller and LED Driver Schematic 
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Figure 2.3 User Interface Schematic 
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2.2.3 LED Driver 

The LEDs are driven by using an 8-bit register to store their brightness value. This 8-bit value is used as a 

parallel output to an R-2R Ladder DAC, which inputs into the gate of a PNP BJT in active mode (the setup 

is an approximate VCCS). Depending on the brightness value stored in the register, a specific current 

value flows through the LED. The LED driver must be able to provide a current to the LED of up to 60 mA 

when the R-2R ladder provides the minimum value of voltage, 0 V (this allows the LEDs to be on during 

power-on and by default), and regulate the current in linear current steps of fixed size down to 0 A 

when the R-2R is at the maximum V.  

An 8-bit R-2R ladder can be iteratively reduced by applications of Thevenin’s theorem to an equivalent 

circuit of Thevenin voltage given by 

𝑉𝑇 =  ∑
𝑉𝑖

2𝑖

8

𝑖=1

            (2.1) 

in series with a Thevenin resistance value of R. A diagram of the equivalent circuit can be seen in Figure 

2.4. Using the small-signal model of a PNP BJT, we can obtain an expression for the base current 𝐼𝐵 given 

by 

𝐼𝐵 =
2.9 − 𝑉𝑇

𝑅𝑙𝑎𝑑𝑑𝑒𝑟 + 𝑅𝐵
      (2.2) 

 

 

from which we can obtain an LED current of 

𝐼𝐶 =  𝛽𝐼𝐵      (2.3) 

Solving for the requirement that 𝐼𝐶 = 60 𝑚𝐴 with 𝑉𝑇 = 0 yields 

𝑅𝑙𝑎𝑑𝑑𝑒𝑟 +  𝑅𝐵  ≈ 14 𝐾Ω 

  

In other words, the total input resistance to the base must be 14 kΩ. Note, however, that these 

calculations are rough estimates and do not account for the appreciable decrease in the DC current gain 

as the collector current increases or the battery voltage depletion from 4.2 V. We thus expect the actual 

values to be somewhat below the required range.  

We simulated our design in LTSpice with the calculated value in order to obtain a more accurate 

representation of the physical implementation. The collector current as a function of the R-2R digital 

input shows an approximately linear relationship that is ideal for our requirements and application, but 

falls short of the required maximum draw of 60 mA at only 45 mA. The simulation plot can be seen in 

Figure 2.5. 
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We instead chose an input resistance of 1kΩ in order to improve the range provided by the BJT (a lower 

base resistance would allow for a higher base current that offsets the decrease in the DC current gain). 

Figure 2.6 shows the simulation results for this circuit, demonstrating that the requirement of 60 mA is 

met for an input voltage of 0 V. Note that as the current range increases, the linear behavior of the 

relationship starts to fade. For our application, the linearity in the 0-60 mA range is sufficient. Current 

ratings for the LED are also satisfied at the maximum voltage of 4.2 V, as shown in Figure 2.7. 

Finally, we needed to ensure that the maximum output voltage of the R-2R ladder is matched to about 

.7 V below the battery voltage so as to maintain a full 256 digital value range in the BJT’s forward-active 

region. We achieved this by stepping down the supply voltage to the 8-bit registers with a second BJT 

forced into active-mode. Although rough as a solution, the approximate .7 V step-down (together with 

minimal losses from the register) was close enough for our purposes. 

 

Figure 2.4 LED Driver Schematic 
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Figure 2.5 Diode Current (D1) vs Input Voltage (V1) for RB = 4 kΩ 

 

Figure 2.6 Diode Current (D1) vs. Input Voltage (V1) for RB = 1 kΩ 
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Figure 2.7 Diode Current (D1) vs Input Voltage (V1) with 4.2 V Supply at V2, RB = 1 kΩ 
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3. Design Verification 

3.1 Custom Bus Protocol 
To verify the operation of the protocol, we first performed a SystemVerilog simulation of the schematic 

shown in figure 2.2. The resulting waveform is shown in figure 2.1. The waveform demonstrates that we 

are able to properly address two modules with different addresses, and receive an acknowledge signal 

from both. We also constructed the design on a breadboard, verified the operation of the protocol 

through an oscilloscope, and communicated to an LED with a simple Arduino program. 

Additional verification of the operation of the protocol is largely visual, and done through programming 

of the microcontroller. Verifying that the protocol works in practice is as simple as programming the 

microcontroller in accordance to the protocol, and attempting to adjust the brightness of LEDs with 

different addresses. We can also attempt to adjust the color temperature of the LEDs by making one of 

the 3000 K or 5700 K LEDs brighter or dimmer, or by performing single-bit feeds into the registers which 

verifies the data packet size flexibility of the protocol.  

We can just as easily verify the lack of visual latency. Once the functionality of the user interface was 

established, we continuously switched between two profiles very quickly, and experienced no 

noticeable latency. An LG V20’s high-frame-rate camera (operating at 120 FPS, or approximately 8 ms 

frames) was used to record the switching process, and no latency was captured in the process. 

3.2 User Interface 
The verification of the operation of the user interface is again largely dependent on proper 

programming of the microcontroller. As mentioned above, we needed to make sure that the 

microcontroller was properly receiving interrupts from the user interface elements, and we did this by 

trial and error of different de-bouncing strengths.  

One of the requirements that we failed to verify was the operation of the LCD display. Because the PCB 

connections of the Molex connector was incorrect, we were unable to provide sufficient power to the 

LCD display. In order to compensate for this, we programmed some additional functionality which 

allowed the user to see what was being changed through indications on the light, rather than through 

the display.  

3.3 LED Driver 
Verification of the LED driver was done first through simulation, and then through the actual 

performance of the LEDs once the modules were assembled. As demonstrated in section 2.2.3, while 

going through the design stages of the driver, we made sure to simulate and verify that our theory was 

correct. We were able to demonstrate that the LEDs produced linear brightness changes based on the 8-

bit values that they received by leveraging a photoresistor within a smartphone to detect their 

luminosity. A plot of the data obtained is shown in figure 3.1. Note that even though the conversion 

between voltage to a measure of luminosity is inaccurate, the plot would only fail by a constant scaling 

factor and linearity would be maintained.  
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Lastly, in order to verify that the LEDs remained at a safe temperature, the light was left on for slightly 

over an hour. Since the unsafe temperatures of the LED would be hot to the touch, we simply made sure 

that the LEDs did not feel more than lukewarm. 

 

Figure 3.1 Module Brightness vs Digital Level for a single module 
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4. Costs 

4.1 Parts 
Table 2   Parts Costs 

Part Manufacturer Retail Cost 
($) 

Quantity Bulk 
Purchase 
Cost ($) 

Actual Cost 
($) 

SN74HC595B 8 bit 
Shift Register 

Texas Instruments 0.50 40 0.50 20.00 

4816P-R2R-103LF R-
2R Ladder 

Bourns 1.85 80 1.85 148.00 

PSMN022-30BL,118 
N-MOSFET 

Nexperia 0.84 40 0.84 33.60 

74AC164D 8 bit SIPO 
Shift Register 

Texas Instruments 0.65 40 0.65 26.00 

S25FL128S 128 Mbit 
SPI Flash Memory 

Cypress 2.42 1 2.42 2.42 

ATMEGA644P 8 bit 
Microcontroller 

Atmel 5.56 1 5.56 5.56 

74AC11074 Dual D 
type Flip Flop 

Texas Instruments 2.20 40 2.20 88.00 

SN74AC11DR Triple 3 
Input AND Gates 

Texas Instruments 0.52 40 0.52 20.80 

CD74HC08M96 Quad 
2 Input AND Gates 

Texas Instruments 0.52 80 0.52 41.60 

SN54HC688 8 Bit 
Identity Comparator 

Texas Instruments 0.88 40 0.88 35.20 

CD74AC04M Hex 
Inverters 

Texas Instruments 0.57 40 0.57 22.80 

WHITE SMD LED, 
3000 K LM561C 

Samsung 0.50 40 0.50 20.00 

WHITE SMD LED, 
6500 K LM561C 

Samsung 0.50 40 0.50 20.00 

TBC857 PNP BJT Toshiba 0.16 120 0.16 19.20 

CRT0603-BY-
1001EAS 1K SMD 

Thick Film Resistor 

Bourns 0.55 120 0.55 44.00 

Li-Ion 3.7V 1.5A 
Battery Pack 

Tenergy 34.99 1 34.99 34.99 

04026C105KAT2A 
1uF SMD Ceramic 

Capacitor 

AVX 0.25 1 0.25 0.25 

LT17663-3.3 Voltage 
Regulator IC 

Linear Technologies 12.19 1 12.19 12.19 

C1206C103JARACTU 
.01uF SMD Ceramic 

Capacitor 

Kemet 0.12 1 0.12 0.12 
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Part Manufacturer Retail Cost 
($) 

Quantity Bulk 
Purchase 
Cost ($) 

Actual Cost 
($) 

TCM0J106M8R 10uF 
SMD Tantalum 

Capacitor 

ROHM 0.40 1 0.40 0.40 

Smart Charger for Li-
Ion Battery Packs: 

3.7V 

Tenergy 18.17 1 18.17 18.17 

Break Away Male 
Headers – 40 pin 

Sparkfun 1.43 14 1.43 20.02 

Break Away Female 
Headers – 40  

Sparkfun 1.50 14 1.50 21.00 

ATAMEL-ICE 
Debugger 

Atmel 133.70 1 133.70 133.70 

2.54mm Standard 
Computer Jumper 

Caps 100 pack 

Corporate Computer 6.39 4 6.39 25.56 

20x2 Parallel 
Character LCD 

Crystalfontz 15.86 1 15.86 15.86 

Rotary Encoder Sparkfun 2.95 3 2.95 8.85 

Black Metal Knob Sparkfun 1.50 3 1.50 4.50 

Tactile Button 
Assortment 

Sparkfun 4.45 1 4.45 4.45 

20 pin Vertical FPC 
Connector 

Molex 4.17 1 4.17 4.17 

20 pin Flat Flex Cable Parlex 4.05 1 4.05 4.05 

Total     $855.46 

 

4.2 Labor 
For our project, we are estimating a salary of around $20 an hour. Assuming that we spend 20 hours a 

week, the same as a part time job, working on the project, with about 10 weeks of labor put into the 

project since the design review: 

$20/hour x 2.5 x 200 hours to complete x 2 partners = $20,000 

Additionally, we had the housing designed by the machine shop, which we estimate took about 10 man-

hours. Estimating another hourly salary of the machine shop at 25 dollars an hour, this would add a cost 

of 250 dollars.  

Totaling the cost from table 2 detailing the parts cost, we estimate a total cost of $21,105.46. 
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5. Conclusion 

5.1 Accomplishments 
Overall, we were able to properly communicate with and control the LED modules using our custom 

MBus protocol. There was minimal visual latency, and the LEDs behaved exactly as we expected when 

sending brightness values. We also found that the maximum brightness of the LEDs was quite great, 

meaning that there is more potential for producing the desired lighting setup. Color temperature 

functionality was successfully implemented, allowing us to produce light anywhere between 3000 K and 

5700 K. The LED driver also produced enough variation of the brightness to distinguish between the 

maximum and minimum brightness, to properly produce a gradient.  

The user interface elements also performed quite well, as we were able to program the microcontroller 

and precisely determine their behavior. They also produced the expected changes to the light, and were 

quite responsive when used. Our usage of the flash memory was successful as well, as we were able to 

grant the user access to 8 different profiles, with 4 being preset, and the other 4 being blank for the 

user’s customization. The choice of 8 profiles was completely based on user-comfort (to avoid cycling 

through a long list), and the flash memory would support well over this amount.  

Finally, we were successful in coordinating with the machine shop to produce our desired housing. 

Although it was somewhat bulky and heavy, it was a good prototype to demonstrate operation of the 

device, and how it would theoretically be used.  

5.2 Failures and Shortcomings 
Unfortunately, we were unable to deliver on the promised number of 40 LED modules over the entire 4 

foot strip. Due to time constraints, difficulty of soldering, and the need to debug individual modules, we 

were only able to produce 16 operating modules. However, since we created the design of the device to 

be modular, and since our bus protocol supports up to 256 modules due to the 8-bit addressing, the 

only thing preventing the additional modules from being added is time and the work put into soldering 

them.  

We were also unable to deliver on a properly working LCD display, due to making the wrong connections 

to the Molex flat cable connector. To fix this, all it would require is changing a connection from the 

regulated output from the battery to the unregulated output, allowing us to produce enough of a 

contrast on the LCD display.  

During the testing of our device, we also encountered a very elusive bug that was seemingly random and 

that we were unable to solve; when communicating through MBus, some of the modules that were not 

being targeted would turn on to maximum brightness and return to the correct state after another 

packet propagated down the bus. We initially theorized that this was due to data misalignment on the 

bus, causing 0’s to be clocked into the registers and turning the LED(s) to maximum brightness. This, 

however, did not explain why the modules would return to their correct state even after the packet-

propagation that fixed them did not load into their registers. Our current and best explanation for this 

weird behavior is inappropriate tri-stating of the registers holding the brightness values; the ICs are 
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capable of disabling their outputs upon instruction by a dedicated pin, and we believe that this is the 

cause for the momentary maximum brightness that is observed when sending packets down the bus. 

The reasons for the disabling remain unknown. 

 

 

 

5.3 Ethical considerations 
Every component and part that we design or use should be RoHS compliant. This falls under the ACM 

Code of Ethics Section 1.2[1], which means that our product should avoid harming the end user. By 

making the product RoHS compliant, we would avoid using dangerous chemicals and substances in our 

design.  

In terms of safety concerns, our greatest involves the usage of Li-ion batteries. These batteries could 

pose a threat if not charged and used properly. We have turned to industry to provide the necessary 

guidelines and equipment to safely house, use, and charge the batteries in the device. This includes 

protection from both thermal and voltage-induced runaway events, preventing potentially harmful 

explosions and fires. Also, we will work to make sure that there is no potential for sudden shorts and 

opens by designing our circuit and carefully verifying each portion, across all ranges of potential usage. 

By doing this, we ensure that no matter what the user does with the device, within reason, they would 

not be injured.  

The user should also be mindful of how the batteries are handled, taking care to properly add and 

remove the batteries from the device when charging. Ensuring the terminals are connected in the 

correct polarity, and one at a time, will guarantee proper usage of the device. Also, the user should 

make sure to not leave the device in temperatures above 40 degrees Celsius. Finally, when charging the 

battery pack, only the specified charger for the pack should be used, and the user should make sure to 

remove the charger when the peak voltage is reached, and use a correct wall input voltage. 

The device can also produce a brightness that could be potentially dangerous to the eye; the user should 

take care to avoid looking at the light for too long, or use the proper eye protection equipment when 

the device is at maximum brightness. 

Finally, since the device is somewhat heavy, the user should take care to always keep the side without a 

handle towards the ground, to ensure that they do not injure themselves during usage of the device. 

5.4 Future work 
For further work, the primary goal would be completing the implementation of the LCD display in the 

user interface. This would require some changes made to the microcontroller PCB, as well as 

programming the microcontroller to properly interface with the display.  
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We would also like to improve the diffusive layer of our device to produce a better, more defined 

gradient, and reduce shadows from the components inside. To help with this, we would like to produce 

a more aesthetically pleasing and lighter housing through some other method like 3D printing.  

Finally, assembling all 40 modules as intended would be the final goal. This would allow the light to 

produce its maximum potential brightness, as well as allow for more well defined gradients. 
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Appendix A Requirement and Verification Table 
Table 3   System Requirements and Verifications  

Requirement Verification Verification 
status  

(Y or N) 

The battery must power the device for at 
least 45 minutes at full brightness. 

1. Must be able to provide a 
minimum of 20 Watt-hours 
(~5,500 mAh) at a voltage range of 
3.6 – 4.2 V with a discharge 
current of 1C (5 – 6 A).  

The battery should have a protection 
circuit to prevent overcharge, over-
discharge, and over current protection. 

1. Turn the device on and set all LEDs 
to max brightness. 

2. Use a Voltmeter to measure the 
battery voltage after 45 minutes and 
verify that the output is above 3.6 V. 

Y 

The charger must charge the battery from 
3.6 V to full safely under 5 hours. 
 
Must be supplied directly from an AC wall 
outlet and be external to the device. 

1. Use a Voltmeter to measure the 
battery voltage and verify that the 
output is below 3.6 V. 

2. Charge the battery for a period of 5 
hours and verify with a Voltmeter 
that the output has reached the 
maximum  
4.2 ± .02 V. 

 

Y 

The flash memory must have a capacity of 
at least 1600 bytes (160 bytes per profile 
over 10 profiles). 
 
Must be SPI ready. 
 
Must operate quickly enough to avoid 
latency to the human eye when loading 
modes from memory. 

- Must provide read and write 
speeds of at least 160 Kbps clocked 
at 5 MHz 

 

1. Cycle between modes, and 
verify that there is no visual 
latency when switching. 

Y 

The voltage regulator must be able to 
regulate the input levels to the flash 
memory to meet component 
requirements of 3.3V. 

 

1. Supply a voltage within the range of 
4.2 – 3.6 with a DC power supply. 

2. Measure the output of the regulator 
with a Voltmeter and verify the 
output is at 3.3 V. 

Y 
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Requirement Verification Verification 
status  

(Y or N) 

 
LCD Display 
 
The LCD Display should readable in a low 
light environment.  
 
Should convey information regarding 
current state of the light. 

- Should show current brightness 
level, current profile, and save 
status. 

 
Buttons 
 
Profile Toggle Function 

- Profile toggling will cycle through 
the profiles as they are displayed 
on the LCD display and stored in 
the flash memory. 

 
Saving Profiles 

- User must have the ability to save 
the current profile into flash 
memory or to discard it. The user 
will have access to 8 different 
modes, and these modes should 
be able to be overwritten. 

 
Rotary Encoders 
 
Their rotation must be effortless but robust 
enough to prevent accidental turning. 
 
Window adjustment 

- The user should have access to a 
window of LEDs of flexible size and 
position that allows for their full 
customization. 

 
Brightness/Color Temperature Adjustment 

- The user should be able to adjust 
the brightness and color 
temperatures of the LEDs within 
the window that they have 
selected. 

1. In a dark environment, display 
40 different characters with the 
backlight on. 

2. Hold at arm’s length and verify 
readability. 

3. Use the buttons to cycle through 
the various profiles offered by 
the device. 

4. Verify that the information of 
the current profile is updated on 
the LCD Display. 

5. Select an arbitrary window and 
adjust its brightness and color 
temperature with the rotary 
encoders.  

6. Verify that the information of 
the current mode is updated on 
the LCD Display. 

7. Save the current profile using 
the buttons. 

8. Turn the device off, and attempt 
to load the saved profile. 

9. Verify that the loaded profile is 
the same as the previously 
saved profile. 

N, All 
Except 

LCD 
Display 
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Requirement Verification Verification 
status  

(Y or N) 

MBus Protocol 
Must allow the microcontroller to establish 
communication with the LEDs using the 
MBus protocol. 
 
Should minimize latency as detected by a 
camera for more time sensitive future 
applications. 

- Should allow multiple LEDs to be 
addressed simultaneously. 

 
Should allow for color temperature 
adjustment through communication to 
multiple LEDs simultaneously. Color 
temperature should range from about 3000 
K (warm, red light) to 5700 K (cool, bluish 
white). 

- Data packet size must be flexible (8 
or 16 bits). 

 
Must be able to communicate information 
to all of the LEDs below the average latency 
of the human eye. 

-  Must be able to operate at 
frequencies above 140 KHz. 

1. Change the brightness of 
multiple LEDs and verify that 
there is no visible latency. 

2. Change the color 
temperature and verify that 
there is no visible latency. 

3. Reset the brightness of all 
LEDs simultaneously and 
verify that there is no visible 
latency through a camera to  

Y 

LED Driver 
Must be able to provide a linear digitally 
controlled brightness values for the LED. 

- The current values must then be 
linear, ranging from 0 to 60 mA 
because the LED brightness 
depends on the current value that 
is driving it. 

 
The LEDs should remain at a safe 
temperature as specified in the datasheet. 

- Must not exceed a maximum 
continuous forward current of 65 
mA. 

 

1. Vary the brightness values 
of the LED over the entire 
range. 

2. Verify the linearity in the 
steps of brightness. 

3. Operate the device at 
maximum brightness for the 
duration of the battery life, 
and ensure that the LEDs do 
not feel more than 
lukewarm. 

Y 
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Appendix B Full User Interface Schematic 

 


