
 
 
 
 
 
 

Coil Gun Control System and User Interface 
 

TA: Luke Wendt 
 

Group: 52 
Bryan Mbanefo (mbanefo2) 

Adwaita Dani (aadani2) 
Felipe Fregoso (fregoso2) 

 
April 28, 2017 

 
 

  



	 2	

Contents	
1	Introduction	...............................................................................................................................................	3	

1.1	Multi-stage Coilgun System Overview	..............................................................................................	3	

1.2	Objectives	...........................................................................................................................................	3	

1.3	Benefits and Features of the coil gun	.................................................................................................	3	

2	Design	.......................................................................................................................................................	4	

2.1	Block Diagram	...................................................................................................................................	4	

2.2	Physical design	...................................................................................................................................	5	

2.2.1	MCU	............................................................................................................................................	5	

2.2.2	Sensors	........................................................................................................................................	6	

2.2.3	User Interface	..............................................................................................................................	7	

2.2.4	Power Supply	..................................................................................................................................	8	

2.2.5	Control Algorithm	...........................................................................................................................	9	

3	Design Verifications	................................................................................................................................	11	

3.1	MCU	.................................................................................................................................................	11	

3.2	Power	................................................................................................................................................	11	

3.3	Sensor	...............................................................................................................................................	11	

3.4	User Interface	...................................................................................................................................	12	

3.5	Trigger Accuracy	..............................................................................................................................	12	

4	Ethics and Safety	.....................................................................................................................................	13	

4.1	Ethics	................................................................................................................................................	13	

4.2	Safety	................................................................................................................................................	14	

5	Cost	.........................................................................................................................................................	15	

5.1	Labor	................................................................................................................................................	15	

5.2	Parts	..................................................................................................................................................	15	

6	Accomplishments	and	Future	Work	........................................................................................................	16	

6.1	Accomplishments	.............................................................................................................................	16	

6.3	Uncertainties	....................................................................................................................................	17	

6.2 Future Work	.....................................................................................................................................	17	

7	References	...............................................................................................................................................	19	

8	Appendix	.................................................................................................................................................	20	

8.1	Arduino	Code	....................................................................................................................................	20	

8.2	Python	GUI	.......................................................................................................................................	22	



	 3	

1	Introduction	
	

1.1	Multi-stage Coil Gun System Overview	
 

The multi-stage coil gun is a device that fires a small projectile at high speeds using an 
electromagnetic force. It works by generating a large current in a coil that winds around a projectile 
with a conduction path in the same direction as the winding. As mentioned in Ampere’s law, a 
magnetic field is generated in the projectile’s conducting path and by Faraday’s law, the induced 
current in the projectile will create a magnetic field opposing that of the core. The projectile is then 
accelerated by a force proportional to the gradient of mutual inductance between the coils, coil and 
projectile currents. 
 

The purpose of this project is to shed light on the many applications of electromagnetics. 
We chose this project because of the technical challenges it presents and because it aligns with the 
skills and academic focus of our group. 

 
1.2	Objectives	
 

The goal of this project is to design and build a control circuit and a user interface for the 
coil gun. The function of the control circuit is to accurately determine when to trigger the coils to 
increase the velocity of the projectile as it passes through. The goal is for the final speed of the 
projectile to be between 15-17 m/s. The launch speed and estimated distance travelled will be 
displayed on the user interface. We also need to ensure that our project is safe and adheres to the 
rules and regulations of IEEE and the University. 
 
1.3	Benefits and Features of the coil gun	
 
Benefits: 

• Entertainment. 
• Can be used as a teaching aid to display the effects of electromagnetism. 
• Portable and easy to set up. 
• Good application of power electronics and control systems. 

 
Features: 

• User Interface 
• High mobility and easy set up 
• Launching a projectile at speeds of 15m/s and above. 

  



	 4	

2	Design	
	

2.1	Block Diagram	

 

   Figure 1: Block diagram for control system of the coil gun 

 In the final system, there is a LIDAR sensor that finds the current distance of the 
projectile within the barrel. Once the projectile has reached the optimal position to trigger the 
coil, the microcontroller will send a signal to the trigger circuit. The position of the projectile is 
sent over to the User Interface on the laptop through serial communication. 

  



	 5	

2.2	Physical design	
	

2.2.1	MCU	
	

 The microcontroller needed to read in data and send it to the trigger circuit quickly enough 
for the coil gun to fire on time. The microcontroller we chose was the ATmega328. This 
microcontroller is also easy to program because the code can be uploaded onto an Arduino dev 
board and then the chip can be removed and placed on our PCB. The microcontroller receives 
analog data from the sensors that allow it to know where the projectile currently is within the 
barrel. When the projectile is within optimal firing position, the microcontroller will send a five 
volt digital signal to the trigger circuit that will discharge the projectile and propel it with more 
force. The microcontroller will also communicate with the laptop using serial communication. 
The microcontroller will send the data through the UART pin through and FTDI chip to the USB 
port. A diagram of the microcontroller can be seen below in figure 2. 

 

 

Figure 2: Interface between MCU and other devices 

 
 
 



	 6	

2.2.2	Sensors	
	

	 The old IR sensors were replaced with a DT35-B15551 LIDAR sensor, this sensor was 
chosen mainly because of its speed of measurement and output time. It also provides both digital 
and analog output but for the purposes if the project, only the analog output was used. The 
LIDAR gives out an analog output with a 10V range going from 0V (minimum teach distance) to 
10V (maximum teach distance).  The Switching output of the LIDAR requires the use of IO 
LINK, however, the MCU does not understand this language which is why there is an IO LINK 
to SPI converter on the PCB, then we send the SPI data to the MCU for processing. The 
switching output is not used because the analog output was sufficient for out applications. 

 The LIDAR can work for various distances ranging from 5mm to 10,000mm and the 
range you need can be configured using the set and select buttons on the LIDAR. It also has 
various output speed modes ranging from 2ms to 64ms. 

 

    Table 1: LIDAR pin configuration 

Pin (color) Function 

1 (brown) +24V power 

2 (White) Analog/Switching output 

3 (Blue) COM 

4 (Black) Switching Output 

5 (Grey) +24V to reset to factory settings 

  

Table 2: Output response time for LIDAR 

 Super-Fast Fast Medium Slow Super-
Slow 

Output rate 2ms 4ms 8ms 16ms 64ms 

Response time 4.5ms 12.5ms 24.5ms 48.5ms 192.5ms 

Switching 
frequency 166Hz 50Hz 25Hz 12Hz 3Hz 

 
 	



	 7	

	

Figure 3: LIDAR Dimensions 

	

2.2.3	User Interface	
 

The user interface will consist of a laptop that has been dedicated for only the coil gun. 
The laptop communicates with the MCU to begin the fire. There is a red button that is clicked to 
fire the first coil and propel the projectile. The MCU also sends the current location of the 
projectile to the laptop for graphs to be created with the data. The MCU and the computer 
communicate with each other through USB. The button that is pressed and the graphs that are 
created are all in a Python GUI. This makes it easier for the user to fire the coilgun and read the 
data of the fire. 



	 8	

2.2.4	Power Supply	
Sorensen SLC 48-4.1b 

The power supply used is the Sorensen SLC 48-4.1b. Our power supply consists of 6 of these 
Sorensen power supplies. Each power supply supplies 50V, so we connect 4 of them in series to 
get an output voltage of 200V DC. This supplies power to our three capacitor banks as shown in 
the figure below: 

 
  Figure 4: Power circuit to charge-discharge capacitors and energize coils 

 

 A discharge circuit is also included to enable us to discharge the capacitor banks if we 
choose not to fire the bullet after we have charged the capacitors. This helps to ensure safety 
especially when stowing away for a long time. 

 

5V power supply 

The system consists of a 24V AC/DC wall adapter that will go into a power jack in the 
PCB. The 24V can then go to a pin to power the LIDAR sensor. It is also connected to a buck 
converter that steps down the voltage to 5V. The circuit for the 24V and 5V supply can be seen 
below in figure 5.  



	 9	

 

Figure 5: 24V and 5V power supply 

2.2.5	Control Algorithm	
 

 The control algorithm that runs on the microcontroller will use a predictive control 
system to determine appropriate triggering times for the three stages of the coil gun. A 
mathematical model of the force applied to the bullet is calculated using equation 1. 

																																																																						𝑓# = 𝑖&'()𝑖*+))#,
𝜕𝑀
𝜕𝑧

             (1)  

 Mutual inductance between the coil and bullet is analytically calculated using elliptical 
integrals and yields a distance profile as shown in fig 6. 

  

                                       Figure 6: Mutual Inductance Vs Displacement  



	 10	

The current through the coils rises rapidly at first and then decreases creating a waveform as 
shown in figure 7. 

 

    Figure 7: Coil current vs Time 

This current profile in the coils leads to a brief force in one direction followed by a large force in 
the opposite direction. We observe that there is a maximum point for both these occurrences at 
points z = ±0.002m (Figure 8).  

 

Figure 8: Force vs Displacement 

The force and momentum values at these two points are compared in figure 9. 

Since the net momentum at the point z = +0.002m is positive, it is the optimal firing position for  



	 11	

the coil. We write our microcontroller code to cause the coil current to trigger when the bullet is 
at this optimal firing point. 

Figure 9: Force vs Time and Momentum vs Time 

	

3	Design Verifications	
	

3.1	MCU	
	

	 We were able to sample our data into our MCU quickly because the ATmega328 has a 
clock speed of 16MHz. This allowed the MCU to send in sufficient data to the User Interface as 
well as trigger the coils at the proper time.	

3.2	Power 
	

	 The Sorenson Power Supply could give the voltage within the range of 195V-200V that 
we specified that it would be able to give. The 24V power supply was also able to be stepped 
down by the Buck Converter to be about 5V. Both tests were confirmed to be within their 
specified voltages with a multimeter. 

	

3.3	Sensor	
	 	

 The sensor used was the DT35-B15551 LIDAR from SICK. This device was selected 
because it meets all our resolution and range requirements. It has a resolution of 0.1mm. 



	 12	

3.4	User Interface	
	

 The User Interface communicates to the microcontroller with USB as expected. The 
diagram below is the output displayed on the User Interface using the data we get from the 
microcontroller. 

 
Figure 10: Data displayed by the User Interface 

	 	

3.5	Trigger Accuracy	
	 	

	 The delay in the microcontroller needed to be small so that it did not affect the timing of 
the firing. We required the trigger time delay to be less than 0.167 milliseconds. In the test, a 
square wave on a function generator was connected to an oscilloscope and the microcontroller. 
The microcontroller outputted a high signal onto the oscilloscope when it read in a high signal. 
The results of the test can be seen below in figure 11. 



	 13	

 

Figure 11: Timing delay in microcontroller 

 The top wave is the function generator and the bottom wave is the output from the 
microcontroller. As can be seen in the figure above, the distance measured in the delay is 9.5 
microseconds. This is less than the required value to accurately trigger the SCRs. 

	

4	Ethics and Safety	
	

4.1	Ethics	
	

We understand that this project has many applications including military purposes, 
however we would like to reiterate that we are doing this purely out of interest and for the purpose 
of learning the engineering process. We do not have any ambitions to cause harm or danger of any 
kind and we will uphold both the university and IEEE code of ethics 

The most important code in the IEEE code of ethics for our project is #1; “to accept 
responsibility in making decisions consistent with the safety, health, and welfare of the public, and 
to disclose promptly factors that might endanger the public or the environment” [2]. This project 
involves making a weapon that could hurt people. It is important that guidelines are laid out for 
everyone to stay safe. Another important rule is #9, “to avoid injuring others, their property, 



	 14	

reputation, or employment by false or malicious action” [2]. This project is meant to teach people 
about electromagnetics and pulsed power and it should not be used for malicious actions. 

4.2	Safety	
	

The LIDAR laser used in the project have a power of 250 mW. This means that the lasers 
fall into Class 3b of lasers. These lasers pose a threat if viewed directly with the eye [4]. Proper 
warning will be given to people to not use binoculars or other optical devices. People will also be 
advised to not stare at the laser. 

Operating a gun is always dangerous, even more so when it involves the use of high 
voltage, current and fast moving projectiles. Appropriate safety precautions will be put in place to 
prevent undesirable and unforeseen circumstances. Some of these safety features include: 

• A protective cover for the capacitor box. 
• A discharge circuit for discharging charged capacitors. 
• Three pole switch to prevent capacitor charge from flowing back into the source. 

 
Some safety rules to follow: 

• Never point the coil gun at something you do not want to shoot. 
• Making sure the power is off before changing any of the circuit connections. 
• Check and test for faulty equipment before use. 
• Always assume that the capacitors are charged. 
• Always discharge capacitors if stowing away for a long time. 
• Always keep the gun pointed in a safe direction. 
• Do not place your finger on the trigger button unless sure that you are ready to fire. 
• Make sure everyone around you is following the safety rules. 
• Do not directly touch the capacitors. 
• The coil gun should never be operated by persons under the influence of alcohol or drugs. 
• Children must never be left alone with the coil gun. 

	 	

	

	
	

	

	

	 	



	 15	

5	Cost	 
5.1	Labor 
	

Name Hourly Rate ($) Hours = 12 weeks × 
15 hours per week 

Total × 2.5 ($) 

Adwaita Dani 33 180 14,850 

Bryan Mbanefo 33 180 14,850 

Felipe Fregoso 33 180 14,850 

Total 99 540 44,550 

 

5.2	Parts 

Parts Part # Quantity 
Unit 
Cost 
($) 

Cost ($) 

Zener Diode 47V 225MW BZX84C47LT1GOSCT-ND 5 0.14 0.7 
AC/DC WALL MOUNT 

ADAPTER 24V 24W 237-1461-ND 1 17.28 17.28 

Power Jack 732-5930-ND 2 1.05 2.1 
Zener Diode 30V 225MW BZX84C30LT1GOSCT-ND 15 0.131 1.97 

Capacitor 270pF 50V 311-1191-1-ND 15 0.075 1.13 

Capacitor 0.1pF 250V 478-6549-1-ND 15 0.68 10.2 

Capacitor 1pF 50V 311-1089-1-ND 15 0.093 1.4 

OP-Amp 497-1580-1-ND 10 0.314 3.14 

Capacitor 10pF 50V 311-1099-1-ND 15 0.059 0.89 

FTDI Chip 768-1135-1-ND 7 2.38 16.66 

Dual Diode  MMBD2837LT1GOSCT-ND 10 0.186 1.86 

Voltage Regulator 296-42411-1-ND 20 1.231 24.62 

Capacitor .47uF 10V 399-9247-1-ND 10 0.134 1.34 

MCU ATMEGA328-PU-ND 5 1.96 9.8 
Resistor 10kΩ 311-10KARCT-ND 30 0.018 0.54 
Resistor 1MΩ 311-1.00MCRCT-ND 15 0.021 0.32 

Capacitor 1uF 16V 311-1365-1-ND 15 0.076 1.14 



	 16	

IO-Link Master MAX14824GTG+-ND 8 5.21 41.68 
16 MHz Clock X433-ND 3 0.69 2.07 
Buck Converter 296-26982-1-ND 5 2.7 13.5 

Capacitor 2.7uF 10V 399-3127-1-ND 5 0.45 2.25 
Capacitor 2700pF 50V 311-1130-1-ND 5 0.1 0.5 
Capacitor .056uF 50V 478-1392-1-ND 5 0.16 0.8 
Capacitor 150pF 50V 399-1125-1-ND 5 0.1 0.5 
Capacitor 47uF 6.3V 311-1897-1-ND 10 0.346 3.46 
Inductor 68uH 2mA 445-1069-1-ND 5 0.21 1.05 

Schottky Diode 40V 3A 497-2465-1-ND 5 0.48 2.4 
Pin Head .1" SAM1184-05-ND 5 1.19 5.95 

Capacitor 4.7uF 25V 490-3335-1-ND 10 0.112 1.12 
Capacitor 10uF 10V 399-4925-1-ND 5 0.13 0.65 

Capacitor 10000pF 50V 311-1136-1-ND 5 0.1 0.5 
Resistor 10kΩ 311-10KARCT-ND 5 0.1 0.5 

Resistor 3.24kΩ 311-3.24KCRCT-ND 5 0.1 0.5 
Resistor 1.78kΩ 311-1.78KCRCT-ND 5 0.1 0.5 

Capacitor .1uF 50V 478-1395-1-ND 5 0.1 0.5 
PCB1   5   26 
PCB2   5   26 

LIDAR DT35-B15551 1 413 413 
IO-Link Cable   1 10 10 

      total 648.50 
 

Total of Labor and Parts = $45,198.50 
 
 

6	Accomplishments and Future Work	
	

6.1	Accomplishments	
	

 After a lot of hard work though the semester we happy to say that we had three major 
accomplishments. The first was that we could get a more accurate way of measuring the position 
of the projectile as it moves through the barrel and get a continuous stream of data. Using this 
data, we could then plot the speed profile of the projectile as it moves through the barrel.  



	 17	

Second, we attained a top speed of 14.36m/s using only two capacitor stages, which is ~4.36m/s 
faster than that achieved by the sensing system in the past using three capacitor stages. Lastly, 
we created a GUI platform to fire the projectile and visualize data related to the fire. 

 

6.3	Uncertainties	
	

	 The LIDAR sensor that measures projectile position currently has a resolution of 0.1mm 
for static targets. Since the current firing speeds are reasonably low, we have not seen any 
significant error in position detection even when the bullet is in motion. But if in the future the 
projectile speed was increased significantly, the LIDAR-based projectile position measurements 
might be less accurate due to Doppler shift in the Tx-Rx optical signals. The magnitude of this 
possible error has not been quantified as yet, and may be a subject for future work. 

	

6.2 Future Work 
	

	 Some future work to be added to optimize the system would be to add striped bullet 
sensing to improve the speed measurement. The photodiode and receiver will be placed at angles 
so that when the projectile is in the position, the return signal is reflected to the receiver. The 
projectile itself will have to be painted with black and white stripes. This will vary the intensity 
of the reflected light and give us a square wave that tells us how many strips have been passed 
and how far into the barrel has the projectile moved. 

	

	

  Figure 12 : Block diagram showing the placement of photodiodes	



	 18	

	

 Another thing to be done would be to make the trigger signal a function of both the 
position and velocity of the bullet. This will help optimize the firing because the projectile does 
not always move at the same velocity so in different fire cycles the time it takes to for the 
projectile to travel a fixed distance will vary which will also vary the optimal time of fire 
because by the time the current rushes into the coil, the projectile may not be in the same optimal 
position 

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
	
	



	 19	

	
	

7	References	
	
[1] Reinhard, K., “A Methodology for Selecting an Electromagnetic Magnetic Gun,” M.S. thesis, 
Dept. Elect. Eng., Univ. of Texas, Austin, TX, 1992. 
 
[2] IEEE, “IEEE IEEE Code of Ethics”, 2017. [Online]. Available: 
http://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 8-Feb-2017]. 
 
[3] Dagdagan, J., Ko, Y., Nanavati, S., “Multistage Coil Gun”, 2013. [Online]. Available: 
https://courses.engr.illinois.edu/ece445/projects.asp. [Accessed: 1-Feb-2017]. 
 
[4] "Laser Classification | Environmental Health and Safety", Ehs.research.uiowa.edu, 2017. 
[Online]. Available: https://ehs.research.uiowa.edu/laser-classification. [Accessed: 25-Feb- 2017]. 
 
[5] V. profile, "AIXIZ 650nm 5mw 12x30mm laser module 3.2VDC", Darutid.blogspot.com, 
2017. [Online]. Available: http://darutid.blogspot.com/2013/03/aixiz-650nm-5mw-12x30mm-
laser-module.html. [Accessed: 25- Feb- 2017]. 
 
[6] S. I. Babic and C. Akyel, "Magnetic Force Calculation Between Thin Coaxial Circular Coils 
in Air," in IEEE Transactions on Magnetics, vol. 44, no. 4, pp. 445-452, April 2008. 
 
 
  



	 20	

8	Appendix	
	

8.1	Arduino	Code	
	

int	lidar	=	A3;	

int	lval	=	0;	

int	dpin	=	5;	//	the	pin	that	will	go	off	to	fire	the	first	coil	

int	fire	=	6;	//	pin	that	will	go	off	to	fire	the	second	coil	

int	last	=	7;	//	pin	to	fire	the	last	coil	

int	go	=	0;	

int	beg	=	0;	

byte	thebyte;	

int	elapse;	

int	elapse_st;	

	

void	setup()	

{	

		Serial.begin(115200);	

		pinMode(dpin,	OUTPUT);	

		pinMode(fire,OUTPUT);	

		pinMode(last,OUTPUT);	

}	

void	loop()	

{	

	

		if	(Serial.available()	>	0)	{	//only	run	this	in	loop	first	time	checks	for	the	fire	command	

							thebyte	=	Serial.read();	

							if	(thebyte	==	'6')	{		

									go	=	1;	

							}	



	 21	

			}	

				

			if(go	==	1)	//start	once	the	fire	command	has	been	given	

			{	

				if	(beg	==	0)	

				{	

						elapse_st	=	millis();				

						beg	=	beg	+	1;	

				}			

				elapse	=	millis(	)-	elapse_st;	//calculate	te	elapsed	time	of	the	fire	

				lval	=	analogRead(lidar);	//get	the	analalog	value	from	the	sensor	

	

					

					

					

				Serial.println(lval);				//send	the	value	to	python	

				Serial.println(elapse);		//send	time	to	python	

				digitalWrite(dpin,	HIGH);	//	first	coil	fired	

					

				if(lval	>	347)	

				{	

								digitalWrite(fire,	HIGH);						//second	coil	fired									

				}	

	

				if(lval	>	684)	

				{	

								digitalWrite(last,	HIGH);						//	third	coil	fired	

																						

				}	

				if(lval	>	1022)					//send	that	the	projectile	has	left	the	coil	reset	pins	for	next	fire	



	 22	

				{	

						Serial.println('e');	

						digitalWrite(dpin,	LOW);	

						digitalWrite(fire,	LOW);	

						digitalWrite(last,	LOW);	

						go	=	0;	

						beg	=	0;	

				}	

		}	

	

			

}	

	

8.2	Python	GUI	
	

import	matplotlib	

matplotlib.use('TkAgg')	

import	numpy	as	np	

from	matplotlib.backends.backend_tkagg	import	FigureCanvasTkAgg	

from	matplotlib.figure	import	Figure	

import	tkinter	as	tk	

import	serial	

import	matplotlib.pyplot	as	plt	

import	csv	

	

	

file_name	=	'three_stage_solidAl_1May17_2'	

	

	

values	=	[]	



	 23	

time	=	[]	

plt.ion()	

cnt	=	0	

	

serialArduino	=	serial.Serial(port='COM8',baudrate=115200,	timeout=10.0)	

	

#class	to	create	the	buttons	and	cap	entries	

class	MyFirstGUI:	

				def	__init__(self,	master):	

								self.master	=	master	

	

								master.title("Coil	Gun	GUI")	

	

								self.fire_button	=	tk.Button(master,	text="FIRE",height	=2,	
width=10,bg="red",fg="white",command=self.fire)	

								self.fire_button.grid(row=0,column=0)	

	

	

				

	

				def	fire(self):	

									flag	=1	

									if(flag==	1):					

												try:	

																serialArduino.write(bytes(b'6'))	

												except:	

																print('This	shit	doesnt	work.')	

					#			print("capacitor	is	fired!")	

									def	funct():	



	 24	

													valueRead	=	None	

													while(valueRead	!=	b'e'):	

																	while(serialArduino.inWaiting()	==	0):	

																					pass	

																	valueRead	=	serialArduino.readline()	

																	timeRead	=	serialArduino.readline()	

																	if	(valueRead==b'e'	or	timeRead	==	b'e'):	

																					return()	

								#check	if	valid	value	can	be	casted	

																	try:	

																				valueInInt	=	float(valueRead)	

																				timeInInt	=	float(timeRead)	

																				print(valueInInt)	

																				if	valueInInt	<=	1024:	

																								if	valueInInt	>=	0:	

																												values.append(valueInInt	*	0.00035)	

																												time.append(timeInInt)	

																												if	valueInInt	==	1023:	

																																return()	

				#																			values.pop(0)	

																								#drawnow(plotValues)	

																								else:	

																												print('invalid	number')	

																				else:	

																								print('number	too	large')	

																	except	ValueError:	

																				print('invalid	cannot	cast')	

																				continue	

					



	 25	

	

									serialArduino.flushInput()	

									serialArduino.flushOutput()									

									funct()	

										

									meter_values	=	values	

	

									#	Code	to	filter	values	

									#	Data	:	meter_values,	time	

									low_pass_data	=	[]	

									window_size	=	20	#	Size	of	averaging	window	

									for	idx	in	range(len(meter_values)):	

												averaging_data	=	[]	

												for	avg_idx	in	range(window_size):	

																if((idx-avg_idx)>=0):	

																				averaging_data.append(meter_values[idx-avg_idx])				#	Use	window	size	from	previous	data	
values	

												low_pass_val	=	np.mean(np.array(averaging_data))	

												low_pass_data.append(low_pass_val)	

									

									

									#	Filter	Time	Data	to	make	it	continuous	

									time_low_pass	=	[]	

									window_size_time	=	4	#	Size	of	averaging	window	

									for	idx	in	range(len(meter_values)):	

												averaging_data	=	[]	

												for	avg_idx	in	range(window_size_time):	

																if((idx-avg_idx)>=0):	

																				averaging_data.append(time[idx-avg_idx])				#	Use	window	size	from	previous	data	values	



	 26	

												low_pass_val	=	np.mean(np.array(averaging_data))	

												time_low_pass.append(low_pass_val)	

	

									fig4	=	Figure(figsize=(4,4))	

									d	=	fig4.add_subplot(111)	

									d.grid(True)	

									

									d.plot(time_low_pass,low_pass_data,label='values')	

									d.set_title("Distance	vs	Time",fontsize=10)	

									d.set_ylabel("Position	(m)",	fontsize=10)	

									d.set_xlabel("Time	(ms)",	fontsize=10)	

										

								

								

										

								#	Calc	speed	of	projectile	wrt	time	

								#	Data	:	meter_values,	time	

									speed_calc_window	=	1	

									speed_data	=	[]	

									for	idx	in	range(len(meter_values)):	

												if((idx-speed_calc_window)	>=	0):	

																delta_position	=	low_pass_data[idx]	-	low_pass_data[idx-speed_calc_window]	

																delta_time	=	time_low_pass[idx]	-	time_low_pass[idx-speed_calc_window]	

																if(delta_time	==	0):	

																				delta_time	=	0.0833	

																speed_val	=	(delta_position*1000)/(delta_time)	

																speed_data.append(speed_val)	

												else:	

																speed_data.append(0.0)	



	 27	

																	

																	

									speed_low_pass_data	=	[]	

									window_size_speed	=	12	#	Size	of	averaging	window	

									for	idx	in	range(len(speed_data)):	

												averaging_data	=	[]	

												for	avg_idx	in	range(window_size_speed):	

																if((idx-avg_idx)>=0):	

																				averaging_data.append(speed_data[idx-avg_idx])				#	Use	window	size	from	previous	data	
values	

																else:	

																				averaging_data.append(0.0)	

												low_pass_val	=	np.mean(np.array(averaging_data))	

												speed_low_pass_data.append(low_pass_val)	

									plt.figure()	

									plt.plot(time_low_pass,speed_low_pass_data)	

										

	

									with	open('{0}.csv'.format(file_name),	'w')	as	writefile:	

												csvwriter	=	csv.writer(writefile)	

												
csvwriter.writerow(['Time','Time_Low_Pass_Val','ADC_value','Low_Pass_Val','Speed_Val','Speed_Low_P
ass_Val'])				#	Write	Header	

												for	idx	in	range(len(time)):	

																csvwriter.writerow(['{0}'.format(time[idx]),	'{0}'.format(time_low_pass[idx]),	
'{0}'.format(values[idx]),	'{0}'.format(low_pass_data[idx]),	'{0}'.format(speed_data[idx]),	
'{0}'.format(speed_low_pass_data[idx])])	

	

	

									min_position	=	min(low_pass_data)	



	 28	

									max_position	=	max(low_pass_data)	

									min_time	=	min(time)	

									max_time	=	max(time)	

									avg_speed	=	(max_position-min_position)*1000/(max_time-min_time)	

									print('Average	Speed:{0}	m/s'.format(avg_speed))	

									print('Exit	Speed:{0}	m/s'.format(speed_low_pass_data[-1]))	

	

									

									#	Calc	acceleration	vs	position	

									accel_calc_window	=	10	

									accel_data	=	[]	

									for	idx	in	range(len(meter_values)):	

												if((idx-accel_calc_window)	>=	0):	

																delta_speed	=	speed_low_pass_data[idx]	-	speed_low_pass_data[idx-accel_calc_window]	

																delta_time	=	time_low_pass[idx]	-	time_low_pass[idx-accel_calc_window]	

																accel_val	=	(delta_speed*1000)/(delta_time)	

																accel_data.append(accel_val)	

												else:	

																accel_data.append(0.0)	

										

									accel_low_pass_data	=	[]	

									window_size_accel	=	5	#	Size	of	averaging	window	

									for	idx	in	range(len(speed_data)):	

												averaging_data	=	[]	

												for	avg_idx	in	range(window_size_accel):	

																if((idx-avg_idx)>=0):	

																				averaging_data.append(accel_data[idx-avg_idx])				#	Use	window	size	from	previous	data	
values	

																else:	



	 29	

																				averaging_data.append(0.0)	

												low_pass_val	=	np.mean(np.array(averaging_data))	

												accel_low_pass_data.append(low_pass_val)	

													

													

									plt.figure()	

									plt.plot(low_pass_data,accel_low_pass_data)	

									

									print('Average	Speed:{0}	m/s'.format(avg_speed))	

									print('Exit	Speed:{0}	m/s'.format(speed_low_pass_data[-1]))	

									

									fig1	=	Figure(figsize=(4,4))	

									acc	=	fig1.add_subplot(111)	

									acc.grid(True)	

									acc.plot(low_pass_data,accel_low_pass_data,label='values')	

									acc.set_title("Acceleration	vs	Position",fontsize=10)	

									acc.set_ylabel("Acceleration	(m/s^2)",	fontsize=10)	

									acc.set_xlabel("Position	(m)",	fontsize=10)	

										

									

									

									fig5	=	Figure(figsize=(4,4))	

									spd	=	fig5.add_subplot(111)	

									spd.grid(True)	

									meter_values	=	values	

									spd.plot(time_low_pass,speed_low_pass_data,label='values')	

									spd.set_title("Speed	vs	Time",fontsize=10)	

									spd.set_ylabel("Speed	(m/s)",	fontsize=10)	

									spd.set_xlabel("Time	(ms)",	fontsize=10)	



	 30	

										

									fig6	=	Figure(figsize=(4,4))	

									dist_spd	=	fig6.add_subplot(111)	

									dist_spd.grid(True)	

									meter_values	=	values	

									dist_spd.plot(low_pass_data,speed_low_pass_data,label='values')	

									dist_spd.set_title("Speed	vs	Position",fontsize=10)	

									dist_spd.set_ylabel("Speed	(m/s)",	fontsize=10)	

									dist_spd.set_xlabel("Position	(m)",	fontsize=10)	

										

									canvas	=	FigureCanvasTkAgg(fig4,	master=self.master)	

									canvas.get_tk_widget().grid(row	=2	,column=6,padx=2,pady=2)	

									canvas.draw()	

	

									canvas	=	FigureCanvasTkAgg(fig5,	master=self.master)	

									canvas.get_tk_widget().grid(row	=	3,column=6,padx=2,pady=2)	

									canvas.draw()	

										

									canvas	=	FigureCanvasTkAgg(fig6,	master=self.master)	

									canvas.get_tk_widget().grid(row	=	2,column=25,padx=2,pady=2)	

									canvas.draw()	

										

									canvas	=	FigureCanvasTkAgg(fig1,	master=self.master)	

									canvas.get_tk_widget().grid(row	=	3,column=25,padx=2,pady=2)	

									canvas.draw()	

									

#class	mclass:	

				

	



	 31	

				

root	=	tk.Tk()	

	

	

my_gui	=	MyFirstGUI(root)	

root.mainloop()	


