
	
	

	

	 	

ANTI-FREEZE	WATER	PIPE	SYSTEM	

By	

Rui	Lan	

Qinru	Li	

Zichen	Liang		

	

Final	Report	for	ECE	445,	Senior	Design,	Spring	2017	

TA:	Eric	Clark		

3	May	2017	

Project	No.	12	

ii	
	

Abstract	

Our	project	provides	an	automated	solution	to	the	frozen	water	pipe	problem	in	the	winter.	Specifically,	
it	can	monitor	the	real-time	temperature	of	the	pipe,	send	the	data	to	the	user,	and	heat	up	the	water	
pipe	when	necessary.	Additionally,	the	project	has	a	backup	battery	system	which	could	be	used	when	
blackouts	happen.	By	the	end	of	the	project,	we	manage	to	achieve	the	features	listed	above	and	create	
a	reliable	anti-freeze	water	pipe	system.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

iii	
	

Contents	
	

1.	Introduction	...	1	

1.1	State	of	Propose	...	1	

1.2	Objectives	...	1	

1.2.1	Goals	and	Benefits	...	1	

1.2.2	Functions	and	Features	...	1	

1.3	Block	Diagrams	...	2	

2.	Design	...	2	

2.1	Control	and	Sensing	System	...	2	

2.1.1	Temperature	Sensors	..	2	

2.1.2	Microcontroller	...	2	

2.2	Wi-Fi	...	3	

2.3	Battery	System	...	4	

2.4	Heating	System	...	5	

2.4.1	SPST	Relay	...	5	

2.4.2	Driver	...	5	

2.4.3	Heating	Element	..	6	

2.5	Power	Selection	System	...	6	

2.6	AC/DC	Converter	..	7	

2.6.1	Transformer	...	7	

2.6.2	Rectifier	...	7	

2.6.3	Filter	..	8	

2.6.4	Voltage	Regulator	..	8	

2.7	Physical	Design	...	10	

3.	Design	Verification	...	11	

3.1	Control	and	Sensing	System	...	11	

3.1.1	Temperature	Sensors	..	11	

3.1.2	Microcontroller	...	11	

3.2	Wi-Fi	...	11	

3.3	Battery	System	...	11	

iv	
	

3.4	Heating	System	...	12	

3.4.1	SPST	Relay	...	12	

3.4.2	Heating	Element	..	12	

3.5	Power	Selection	System	...	12	

3.6	AC/DC	Converter	..	12	

3.6.1	Transformer	...	12	

3.6.2	Rectifier	...	12	

3.6.3	Filter	..	13	

3.6.4	Voltage	Regulator	..	14	

4.	Costs	...	14	

4.1	Parts	...	14	

4.2	Labor	...	14	

4.3	Total	Cost	..	14	

5.	Conclusion	..	15	

5.1	Accomplishments	...	15	

5.2	Uncertainties	..	15	

5.3	Ethical	considerations	..	15	

5.4	Future	work	..	15	

References	..	17	

Appendix	A	 Requirement	and	Verification	Table	..	18	

Appendix	B		 Program	for	the	Controller	...	21	

Appendix	C		 Program	for	the	Wi-Fi	Module	...	31	

Appendix	D		 Program	in	User-end	(Python)	...	40	

Appendix	E	 PCB	Layout	..	42	

1	
		

1.	Introduction	

1.1	State	of	Propose		
We	notice	the	fact	that	during	the	winter	when	the	temperature	drops	down,	the	water	pipe	will	get	
frozen.	The	frozen	water	pipe	has	a	high	risk	of	bursting.	This	could	be	a	huge	problem	if	no	one	is	at	
presence	to	deal	with	it.	We	believe	it	would	be	helpful	if	there	is	a	device	that	can	both	heat	up	the	
water	pipe	externally	and	notify	customers	the	current	situation	of	the	water	pipe.	Our	device	aims	to	
monitor	the	temperature	of	the	water	pipe,	heat	up	the	water	pipe,	send	the	real-time	data	to	
customers	and	have	a	backup	power	source	in	case	of	blackouts.	

1.2	Objectives	

1.2.1	Goals	and	Benefits		
• Reduce	the	risk	of	water	damage		
• Reduce	the	waste	of	water		
• Increase	the	longevity	of	the	plumbing	utility	
• Increase	the	ease	of	monitoring	the	house	plumbing	system	

1.2.2	Functions	and	Features		
• Monitor	the	temperature	of	the	water	pipe		
• Provide	the	real-time	temperature	data	to	the	user		
• Heat	up	the	water	pipe	when	necessary		
• Keep	the	system	functioning	when	blackouts	occur		

2	
		

1.3	Block	Diagrams		

	

Figure	1	Overview	of	the	Final	System	Design	

2.	Design	
The	following	sections	will	elaborate	the	detailed	design	of	our	subsystems.		

2.1	Control	and	Sensing	System			
The	control	and	sensing	system	includes	DS18B20	temperature	sensors	[1]	and	an	ATmega328	
microcontroller	[2].	The	system	collects	data	from	the	sensors	and	performs	all	the	decision-makings	in	
our	project.	

2.1.1	Temperature	Sensors		
DS18B20	is	a	digital	thermometer	which	provides	a	wide	range	of	temperature	measurement	(-55˚C	to	
125˚C).	It	has	a	user-selectable	resolution	which	provides	9-bit	to	12-bit	accuracy.	The	communication	to	
the	temperature	sensors	is	supported	by	One-Wire	bus	protocol	which	requires	minimal	wiring.	In	our	
system,	we	use	two	sensors	to	measure	the	temperature	of	the	pipe	for	a	higher	accuracy.		

2.1.2	Microcontroller		
ATmega382P	microcontroller	is	a	low	power	CMOS	8-bit	microcontroller.	It	allows	in-system	
programming	(ISP)	and	supports	multiple	communication	protocols	like	One-Wire	bus	protocol,	UART	
protocol	that	we	require.	We	connect	it	to	an	external	16MHz	oscillator	as	its	clock	speed	to	improve	
the	performance	of	the	controller.		

3	
		

The	controller	collects	data	from	the	temperature	sensors	and	sends	these	data	to	the	Wi-Fi	module.	If	
the	temperature	is	too	low,	it	will	turn	on	the	heating	system.	In	our	final	demonstration,	we	set	the	
lower	bound	of	the	temperature	as	8˚C	and	the	upper	bound	as	10˚C.	The	reason	why	we	set	these	
thresholds	is	that	in	the	actual	experiments	when	we	fill	the	pipe	with	ice	and	water,	the	temperature	of	
pipe	can	only	drop	to	around	6	to	8˚C.	However,	if	the	device	operates	during	the	winter,	those	
thresholds	are	set	to	4˚C	and	7˚C	as	the	following	flowchart	shows.		

The	software	flowchart	of	the	microcontroller	is	shown	as	Figure	2.	

	

Figure	2	Software	Flowchart	

2.2	Wi-Fi	
The	Wi-Fi	module	is	the	device	that	sends	data	wirelessly	to	the	user.	Here	we	choose	Adafruit	HUZZAH	
ESP8266	chip	[3]	as	the	module.	ESP8266	supports	UART	protocol	which	is	its	primary	method	of	
communication	to	the	microcontroller.	ESP8266	also	supports	MQTT	protocol	which	is	a	software	
protocol	where	devices	can	publish	messages	to	the	internet	(or	subscribe	messages	from	the	internet).	
During	the	operation,	the	controller	first	sends	the	temperature	data	to	the	Wi-Fi	module.	The	Wi-Fi	
module	then	converts	these	data	into	an	MQTT	message	which	is	published	to	the	internet.	The	user	on	
the	other	side	can	receive	these	data	from	the	server.	For	the	demonstration	purpose,	we	develop	a	
Python	program	that	receives	messages	from	the	Wi-Fi	module	and	generates	a	real-time	plot	in	the	
laptop.	For	the	detailed	Python	code,	please	refer	to	Appendix	D.		

4	
		

The	overall	circuit	of	the	temperature	sensors,	the	microcontroller,	and	the	Wi-Fi	module	is	shown	as	
Figure	3	below.		

	

Figure	3	Schematic	of	the	Digital	System	

2.3	Battery	System		
The	Battery	System	is	to	ensure	the	anti-freeze	water	pipe	system	to	continue	working	even	there	is	a	
blackout	(the	wall	outlet	power	is	no	longer	available).		

We	use	a	12V	7Ah	rechargeable	lead	acid	battery	[4]	for	the	backup	power	source.	This	battery	gives	us	
12V	DC	voltage.		

The	battery	is	then	connected	to	the	voltage	inverter	[5],	which	inverts	12V	DC	from	battery	to	110V	AC	
voltage.	The	inverted	110V	AC	voltage	connects	to	the	input	of	the	power	selection	system.			

5	
		

2.4	Heating	System		
The	heating	system	aims	to	provide	thermal	energy	to	the	frozen	water	pipe.	The	source	of	the	thermal	
energy	is	silicon	rubber	bendable	heating	element	[6].	We	use	single-pole,	single-throw	(SPST)	relay	[7]	
to	turn	on/off	the	heating	element,	based	on	a	certain	temperature	threshold.	The	5V	DC	control	signal	
coming	from	the	microcontroller	controls	the	operation	of	the	SPST	relay.	Between	the	microcontroller	
and	the	SPST	relay,	there	exists	a	driver	that	can	block	a	larger	amount	of	current	to	protect	the	
microcontroller.	The	performance	of	this	system	can	heat	up	infused	ice	and	water	pipe	by	3˚C	in	20	
minutes.	The	Figure	4	below	shows	the	connection	of	this	system.		

	

Figure	4	Block	Diagram	of	Heating	System	

In	terms	of	the	physical	connection	of	this	system,	the	microcontroller,	the	driver,	and	the	SPST	relay	are	
soldered	on	the	PCB.	Besides,	the	heating	element	is	placed	at	the	bottom	of	the	water	pipe.		

2.4.1	SPST	Relay		
The	SPST	relay	is	a	switch	that	controls	the	heating	element.	Based	on	the	5V	DC	control	signal	from	the	
microcontroller,	the	SPST	relay	controls	a	high	voltage	(110V	to	120V	AC	from	the	power	selection),	as	
the	heating	element	requires.		

2.4.2	Driver	
Because	the	maximum	output	current	limit	of	the	microcontroller	is	40mA	whereas	the	minimum	
activating	current	limit	of	the	SPST	relay	is	40mA,	it	would	be	troublesome	if	we	connect	them	together	
directly.	Therefore,	we	use	a	driver	as	a	switch	to	drive	a	large	amount	of	current	by	a	small	amount	of	
current.	

The	driver	contains	a	TIP120	transistor.	Due	to	the	potential	damage	that	can	occur	when	the	SPST	relay	
is	de-energized,	we	have	a	snubber	diode	as	shown	below	to	prevent	the	transistor	from	being	
overloaded.	The	overall	schematic	of	the	drive	is	shown	in	Figure	5	in	next	page.		

	

	

6	
		

	

Figure	5	Schematic	of	Driver	in	Heating	System	

2.4.3	Heating	Element		
We	use	silicon	rubber	bendable	heating	element	to	heat	up	the	water	pipe.	The	heating	element	has	
150W	power,	rated	120V	AC	voltage.	In	this	situation,	the	current	passing	through	the	heating	element	
can	be	calculated	as:		

𝐼 = #
$
= %&'#

%('$
= 1.25𝐴																																																																		(1)	

However,	this	kind	of	heating	element	has	certain	downsides.	It	does	not	quite	fit	our	water	pipe.	This	
caused	a	problem	of	heating	inefficiency.	Also,	because	of	the	heating	inefficiency,	we	have	a	longer	
heating	time	than	we	expected.		

2.5	Power	Selection	System		
One	of	the	major	features	of	our	project	is	the	backup	battery	system	which	can	be	used	when	
blackouts	happen.	We	design	this	power	selection	system	using	the	double-pole,	double-throw	relay	
(DPDT	relay).	The	DPDT	relay	acts	as	a	switch	of	power	sources.	With	two	inputs,	it	can	select	the	power	
source	available	based	on	the	existence	of	the	coil	voltage.	When	the	coil	voltage	is	activated,	the	relay	
chooses	wall	outlet	as	the	source	of	power.	Otherwise,	the	relay	chooses	the	power	from	the	battery	
system.	Thus,	we	connect	the	voltage	from	the	wall	outlet	as	the	coil	voltage	to	fulfill	our	design	
requirements	stated	above.	The	output	of	power	selection	system	goes	to	two	parts.	One	is	the	AC/DC	
converter	to	generate	5V	DC,	and	the	other	is	the	heating	system	to	heat	up	our	water	pipe.	Figure	6	in	
next	page	shows	the	connection	of	this	system.	We	use	the	DPDT	relay	Z5357-ND	[8]	in	our	final	circuit.		

	 	

7	
		

	

Figure	6	Schematic	of	Power	Selection	System	

2.6	AC/DC	Converter		
Since	all	our	digital	components	require	5V	DC	voltage,	we	need	an	AC/DC	converter	to	generate	the	DC	
voltage.	The	AC/DC	converter	contains	four	parts:	power	transformer,	rectifier,	filter,	and	voltage	
regulator.	The	high-level	block	diagram	of	the	AC/DC	converter	is	shown	below	in	Figure	7.		

	

Figure	7	Block	Diagram	of	AC/DC	Converter	

2.6.1	Transformer		
The	first	part	of	our	AC/DC	converter	is	the	transformer	which	gives	us	a	lower	AC	voltage	on	its	
secondary	side.	We	use	the	MT2115-ND	transformer	[9].	If	there	is	120V	AC	voltage	on	its	primary	side,	
the	secondary	side	voltage	would	be	12V	AC	per	the	datasheet	[9].	We	calculate	the	coil	relationship	
between	two	sides	of	the	transformer.		

./

.0
= $/

$0
= %('

%(
= 10																																																																				(2)	

The	voltage	of	the	secondary	side	of	the	transformer	is	fed	into	the	rectifier.		

2.6.2	Rectifier		
The	second	part	of	our	AC/DC	converter	is	the	rectifier.	We	use	a	full-wave	rectifier	because	it	can	be	
applied	to	both	half-cycles	of	the	incoming	AC	voltage.	Thus,	we	can	achieve	a	higher	accuracy	than	the	

8	
		

half-wave	rectifier	does.	The	full-wave	rectifier	contains	four	diodes	as	the	Figure	8	shows.	After	the	
rectifier,	the	signal	contains	only	the	positive	part	and	the	signal	of	the	whole	period	is	rectified.		

	

Figure	8	Circuit	Diagram	of	the	Full-wave	Rectifier	

2.6.3	Filter	
After	the	full-wave	rectifier,	we	need	a	smoothing	capacitor	to	further	smooth	the	voltage	signal.	The	
smoothing	capacitor	acts	as	a	filter.	The	voltage	regulator	requires	the	filter	for	smoothing	the	DC	
voltage.	We	use	a	470µF	capacitor	in	our	project.		

2.6.4	Voltage	Regulator		
After	the	smoothing	capacitor,	the	voltage	goes	into	a	voltage	regulator	to	obtain	a	stable	5V	DC	
voltage.	We	use	LM317	[10]	low-dropout	(LDO)	regulator	in	our	project.	As	long	as	the	input	DC	voltage	
remains	in	the	certain	range,	we	can	get	stable	5V	DC	from	its	output.	The	range	is	calculated	as	
following.		

2.5𝑉 + 𝑉456 = 2.5𝑉 + 5𝑉 = 7.5𝑉 ≤ 𝑉9: ≤ 32𝑉																																								(3)	

This	feature	of	the	voltage	regulator	enables	us	to	get	stable	5V	for	both	wall	outlet	and	battery	system	
power	supplies.	Initially,	a	5V	linear	regulator	is	used	which	only	supports	100mA	output	current.	After	
realizing	this	problem,	we	change	the	voltage	regulator	whose	maximum	current	is	as	high	as	1.5A.	This	
is	sufficient	for	the	use	of	all	digital	components.	After	tests,	other	components	of	our	project	require	
120mA	current	in	total.	The	output	of	the	voltage	regulator	goes	to	the	temperature	sensors,	the	
controller,	the	Wi-Fi	module,	and	the	SPST	relay.		

According	to	the	datasheet	of	LM317	[10],	the	circuit	diagram	of	the	voltage	regulator	is	shown	in	Figure	
9.	

9	
		

	

Figure	9	Circuit	Diagram	of	the	Voltage	Regulator	

The	output	voltage	is	determined	by:	

𝑉< = 𝑉=>? 1 + =0
=/

+ 𝐼@AB𝑅((4)	

where	in	the	equation	(4),	𝑉=>? = 1.25V,	𝐼@AB = 50𝜇𝐹	(which	can	be	ignored),	and	𝑅% = 240Ω.	

𝑅(can	be	calculated	based	on	the	output	voltage	𝑉< = 5𝑉	as	our	expectation.	

&
%.(&

= 1 + =0
(I'

																																																																												(5)	

𝑅(= 3×240 = 720Ω	

As	the	voltage	regulator	can	generate	a	large	current	up	to	1.5A,	a	diode	is	inserted	between	the	output	
side	of	the	regulator	to	the	input	side.	This	diode	can	protect	the	voltage	regulator	if	there	is	a	short	
circuit	in	our	digital	system.	Also,	the	two	external	capacitors	are	required	to	increase	the	output	
stability.	The	capacitor	on	the	input	side	is	0.1µF	and	the	capacitor	on	the	output	side	is	1µF.		

10	
	

The	schematic	of	AC/DC	converter	is	shown	as	Figure	10.	

	

Figure	10	Schematic	of	the	AC/DC	Converter	

2.7	Physical	Design	
We	configure	a	water	pipe	on	which	the	anti-freeze	water	pipe	system	can	be	easy	assembled	and	
dissembled.	The	water	pipe	used	in	the	demonstration	is	a	5-feet-long	copper	water	pipe.	This	can	
transfer	the	thermal	energy	generated	from	the	heating	element	to	the	overall	water	pipe	in	a	rapid	and	
efficient	way.	At	each	end	of	the	water	pipe,	we	install	a	steel	cap.	These	caps	not	only	can	stop	the	
leakage	of	the	water	coming	out	of	the	water	pipe,	but	also	can	provide	a	more	realistic	environment	to	
simulate	the	condition	of	the	water	pipe	when	the	ice	and	water	are	flowing	through.	Between	two	steel	
caps	and	the	water	pipe,	there	is	a	female	adaptor	on	each	side.	These	female	adaptors	build	a	
connection	between	the	water	pipe	and	steel	caps	to	facilitate	the	assembling	of	the	caps.		

Besides	all	the	mentioned	above,	there	are	several	specific	considerations	we	take	in	the	physical	design	
of	sensors.		

Firstly,	to	prevent	the	external	thermal	influence	from	the	environment,	the	sensor	is	wrapped	in	a	
bubble	wrap	for	insulation	purpose.	Such	wrapping	also	ensures	a	firmer	attachment	between	the	
sensors	and	the	pipe,	which	improves	the	measurement	accuracy.	In	our	experiment,	the	lowest	
temperature	we	can	get	from	sensors	without	wrapping	is	15˚C	whereas	we	can	get	as	low	as	to	5˚C	
with	wrapping	applied.	

Secondly,	sensors	are	placed	in	various	positions	for	better	measurement	accuracy.	Different	locations	
in	the	pipe	have	different	temperature.	For	example,	ice	and	water	are	gathered	in	the	bottom	of	the	
water	pipe	so	the	temperature	there	is	close	to	zero	degree.	On	top	of	the	pipe,	however,	usually	is	air.	
The	thermal	conductivity	of	air	is	0.024W/mK	while	that	of	water	is	0.58W/mK	[11].	Therefore,	water	is	
more	sensitive	to	the	change	of	temperature.	Due	to	this	reason,	we	place	our	sensors	on	multiple	

11	
	

positions	close	to	the	bottom	of	the	water	pipe.	Taking	an	average	of	measurement	data	in	multiple	
positions	also	reduces	the	probability	of	measurement	noise	and	hence	improves	the	measurement	
accuracy.	

Finally,	we	introduce	the	water-proof	design	on	the	sensors	to	prevent	potential	electrical	hazards.	We	
apply	two	layers	to	all	electrical	connections	on	the	sensors.	The	first	layer	is	the	heat	shrink.	It	isolates	
all	the	electrical	connections	to	avoid	short	circuits.	The	second	layer	is	the	water-proof	glue	which	
covers	outside	the	heat	shrink.	It	prevents	any	contact	between	the	heat	shrink	and	water.	These	two	
layers	ensure	that	the	sensors	can	still	function	properly	even	in	the	wet	condition.	

3.	Design	Verification	
We	create	a	specific	requirements	and	verifications	(R&V)	table	for	individual	systems	in	the	project.	
During	the	demonstration,	all	the	subsystems	can	function	as	the	requirements	of	the	R&V,	except	the	
battery	system.	All	the	subsystems	can	be	integrated	into	a	project	which	fulfills	our	expectation	
described	in	the	Objective	(1.2)	part.	Our	detailed	descriptions	and	verifications	are	in	the	following	
sections.	Our	Appendix	A	includes	our	full	R&V	table.				

3.1	Control	and	Sensing	System			

3.1.1	Temperature	Sensors		
A	working	temperature	sensor	can	provide	an	accurate	real-time	temperature	data	consistently	and	
reliably	to	the	controller.	The	temperature	it	measures	must	be	close	or	equal	to	the	temperature	of	the	
water	pipe.	For	details	on	the	specific	requirements	and	testing	procedures	of	the	temperature	sensors,	
please	see	Appendix	A.	

3.1.2	Microcontroller		
A	working	controller	can	reliably	and	robustly	control	all	sensors,	the	heating	system,	and	the	Wi-Fi	with	
a	small	power	consumption.	It	can	process	data	and	decide	whether	to	turn	on	or	off	the	heating	
system.	To	ensure	the	reliable	operation,	we	divide	the	functionality	of	the	controller	into	portions	and	
test	them	individually.	These	potions	include	the	digital	output	and	input	of	the	One-Wire	bus	protocol	
and	UART	bus	protocol,	and	the	control	signal	of	the	heating	system.	For	details	on	the	specific	
requirements	and	testing	procedures	of	the	controller,	please	see	Appendix	A.	

3.2	Wi-Fi	
A	working	Wi-Fi	module	can	send	real-time	data	to	the	server	consistently	and	reliably.	It	publishes	
messages	to	the	server	with	MQTT	protocol.	These	messages	will	then	be	available	to	the	user	end	as	
soon	as	possible.	For	details	on	the	specific	requirements	and	testing	procedures	of	Wi-Fi,	please	see	
Appendix	A.		

3.3	Battery	System		
The	output	voltage	of	the	battery	system	should	be	110V	AC	with	an	error	range	of	±5V.	From	the	
performance	of	the	final	demonstration,	the	result	satisfies	the	requirement	of	the	battery	system.	For	
the	detailed	R&V	for	this	section,	please	refer	to	Appendix	A.	

12	
	

3.4	Heating	System		
The	goals	of	the	heating	system	are	to	provide	the	thermal	energy	to	the	water	pipe	and	to	turn	on/off	
the	heating	process	based	on	the	control	signal	from	the	microcontroller.	

3.4.1	SPST	Relay		
The	SPST	relay	must	be	able	to	turn	on	the	heating	element	when	the	control	signal	is	5V	DC	and	turn	
off	the	heating	element	when	the	control	signal	is	around	0V.	For	the	detailed	R&V	for	this	section,	
please	refer	to	Appendix	A.	

3.4.2	Heating	Element		
Our	heating	element	aims	to	provide	sufficient	thermal	energy	to	the	water	pipe.	The	heating	element	
must	increase	the	temperature	of	the	water	pipe	in	3˚C	by	20	minutes.	For	the	detailed	R&V	for	this	
section,	please	refer	to	Appendix	A.	

3.5	Power	Selection	System		
The	aim	of	our	power	selection	system	is	to	choose	from	two	power	sources:	wall	outlet	and	battery	
system.	Thus,	the	project	should	work	when	blackouts	happen.	According	to	the	requirement,	when	the	
coil	voltage	is	120V	AC,	the	DPDT	relay	selects	power	from	the	wall	outlet.	Otherwise,	it	chooses	the	
power	from	the	battery	system.	Our	test	results	show	our	power	selection	system	fulfills	its	
requirements.		For	the	detailed	R&V,	please	refer	to	Appendix	A.		

3.6	AC/DC	Converter		
The	overall	aim	of	the	AC/DC	converter	is	to	provide	5V	stable	DC	at	least	120mA	for	whole	system	to	
use.	The	result	shows	the	AC/DC	converter	fulfills	the	requirements	for	both	the	wall	outlet	and	the	
battery	system	power	supplies.	For	the	detailed	R&V	for	this	section,	please	refer	to	Appendix	A.		

3.6.1	Transformer		
We	expect	that	the	transformer	can	step	120V	AC	voltage	down	to	12V	AC	on	its	secondary	side.	As	the	
voltage	supplied	by	the	wall	outlet	is	nearly	120V	AC	and	the	voltage	provided	by	the	battery	system	is	
110V	AC,	we	tolerate	the	error	within	the	range	of	±2V.	Based	on	tests	performed,	both	power	sources	
give	us	a	voltage	within	the	tolerance	range.		

3.6.2	Rectifier		
We	require	the	voltage	signal	after	the	full-wave	rectifier	to	be	fully	rectified.	We	did	the	unit	test	on	the	
rectifier	by	giving	a	10V,	60Hz	sinusoid	signal	to	its	input.	And	from	the	output,	we	found	the	voltage	
signal	only	contains	the	positive	part	and	the	signal	of	the	whole	period	has	been	rectified.	Figure	11	and	
12	show	the	waveform	of	the	test.		

13	
	

	

Figure	11	Input	of	Rectifier	Test	

	

Figure	12	Output	of	Rectifier	Test	

3.6.3	Filter		
The	filter	provides	a	smoothed	DC	signal	for	the	LDO	to	regulate.	This	is	important	in	the	AC/DC	
converter	design.	Experiments	show,	after	the	filter,	the	voltage	signal	gets	further	smoothed.		

14	
	

3.6.4	Voltage	Regulator		
The	voltage	regulator	is	the	final	part	of	the	AC/DC	converter.	With	a	certain	range	of	the	input,	it	can	
provide	5V	DC	voltage.	Also,	it	offers	enough	current	up	to	1.5A,	which	fulfills	the	requirement	that	the	
AC/DC	converter	should	provide	at	least	120mA.	For	the	detailed	R&V	for	this	section,	please	refer	to	
Appendix	A.	

4.	Costs	
The	followings	are	the	parts	and	labor	costs	of	the	project.		

4.1	Parts	
Table	1	Parts	Costs	

Part	 Manufacturer	 Retail	Cost	($)	 Bulk	Purchase	
Cost	($)	

Actual	Cost	($)	

1-1/2"	x	5'	Type	L	Copper	Pipe	 Menards	 36.48	 36.48	 36.48	
1-1/2"	PVC	Male	Adapter	 Carlon	 1.54	 1.54	 1.54	

DS18B20	Temperature	Sensor	 Maxim	 5.98	 5.98	 5.98	
Z5357-ND	DPDT	Relay	 Omron	 11.81	 11.81	 11.81	

MT2201-ND	Transformer	 Tamura	 5.08	 5.08	 5.08	
LM317	Voltage	Regulator	 Texas	

Instruments	
0.62	 0.62	 0.62	

DPCS10	Heating	Element	 Briskheat	 129.95	 129.95	 129.25	
EXP1270	Rechargeable	Lead	Acid	

Battery	
ExpertPower	 16.99	 16.99	 16.99	

300W	Inverter	DC	12V	to	110V	AC	 SNAN	 24.99	 24.99	 24.99	
G5NB-E	SPST	POWER	RELAY	 Omron	 1.98	 1.98	 1.98	
ATmega328P	Controller	 Atmel	 1.96	 1.96	 1.96	
HUZZAH	ESP8266	Wi-Fi	 Adafruit	 9.95	 9.95	 9.95	

Total	 	 247.33	 247.33	 247.33	

4.2	Labor	
Table	2	Labor	Costs	

Engineer	 Rate	($/hour)	 Hours	 Total	($)	
Rui	Lan	 25	 300	 18750	
Qinru	Li	 25	 300	 18750	

Zichen	Liang	 25	 300	 18750	
Total	 	 900	 56250	

	

4.3	Total	Cost	
Total	Cost	=	Parts	+	Labor	=	$247.33	+	$56250	=	$56497.33		

15	
	

5.	Conclusion	

5.1	Accomplishments	
In	the	end,	our	project	is	capable	of	adequately	heating	up	the	water	pipe,	consistently	sending	
messages	to	the	customer,	and	promptly	using	backup	battery	system	when	necessary.	The	device	can	
prevent	the	water	pipe	from	freezing	and	being	burst.	We	are	able	to	design	a	power	system	that	
supplies	constant	power	whatever	happens.	We	also	accomplish	the	interaction	between	physical	
sensing	tools	(temperature	sensors,	heating	element)	and	electrical	digital	components	(Wi-Fi	module,	
control	system).	We	put	our	efforts,	knowledge,	and	diligence	from	past	four	years	of	undergraduate	
studies	into	this	project,	and	we	are	pleased	with	the	outcome	of	this	project.	

5.2	Uncertainties	
We	have	several	uncertain	issues	about	the	project.	Firstly,	the	heating	time	is	out	of	our	expectation.	
We	underestimate	the	heating	efficiency	of	the	heating	element.	This	effect	is	due	to	the	unmatched	
heating	element	to	the	water	pipe.		

Secondly,	we	are	uncertain	about	the	working	time	of	the	battery	system.	We	cannot	have	an	exact	
working	time	that	guarantees	the	battery	can	work	sufficiently.	This	is	because	the	12V	DC	battery	is	
connected	to	the	voltage	inverter	such	that	the	12V	DC	voltage	is	inverted	to	110V	AC	voltage,	and	the	
inverted	voltage	is	applied	to	other	electrical	components	(AC/DC	converter,	control	and	sensing	
system,	Wi-Fi	module,	and	heating	system).		

5.3	Ethical	considerations	
The	aim	of	this	project	is	to	develop	an	anti-freeze	water	pipe	system	that	can	reduce	the	waste	of	
water	and	the	rate	of	plumbing	utility	being	busted.	This	device	can	increase	the	safety	and	welfare	of	
the	human	races,	and	reduce	the	damage	that	may	threaten	the	public.	This	follows	the	first	code	of	the	
IEEE	Code	of	the	Ethics	[12]:	

“to	accept	responsibility	in	making	decisions	consistent	with	the	safety,	health,	and	welfare	of	the	public,	
and	to	disclose	promptly	factors	that	might	endanger	the	public	or	the	environment.”	

Moreover,	since	the	project	is	related	to	the	infusion	of	ice	and	water	into	the	pipe,	this	sort	of	behavior	
may	disobey	the	lab	code,	we	always	infuse	electric	conducting	materials	into	the	pipe	outside	the	lab	
and	then	conduct	experimentations	inside	the	lab.	This	action	follows	the	ninth	code	of	the	IEEE	Code	of	
the	Ethics:	

“to	avoid	injuring	others,	their	property,	reputation,	or	employment	by	false	or	malicious	action.”	

5.4	Future	work	
We	believe	that	our	product	has	the	potential	to	protect	water	pipe	from	frozen	and	people	from	
horrendous	water	damage.	In	the	future,	we	plan	to	improve	the	heating	element	so	that	it	fits	better	to	
the	water	pipe	and	supplies	higher	heating	efficiency.	We	may	also	amend	the	battery	system	
correspondingly	to	ensure	that	the	entire	system	can	operate	normally	in	a	sustainable	amount	of	time	
during	a	blackout.	Since	the	system	involves	high	voltage,	we	will	improve	the	electrical	safety	of	the	

16	
	

entire	system	and	guarantee	that	all	the	electrical	connections	are	isolated	from	the	outside.	Together	
with	these	design	improvements,	we	will	work	on	reducing	the	costs	and	power	consumption	of	the	
system	and	investigate	the	marketability	of	our	product.		

	

	 	

17	
	

References	
[1]	 Programmable	Resolution	1-Wire	Digital	Thermometer,	datasheet,	Maxim,	2016.	Available	at:	

https://cdn-shop.adafruit.com/datasheets/DS18B20.pdf		

[2]	 ATMEL	8-BIT	MICROCONTROLLERWITH	4/8/16/32	KBYTES	IN-SYSTEM	PROGRAMMABLE	FLASH,	
datasheet,	Atmel,	2015.	Available	at:	http://www.atmel.com/images/Atmel-8271-8-bit-AVR-
Microcontroller-ATmega48A-48PA-88A-	88PA-168A-168PA-328-328P_datasheet_Complete.pdf		

[3]	 Adafruit	HUZZAH	ESP8266	breakout,	datasheet,	adafruit.com,	2016.	Available	at:	
http://www.mouser.com/ds/2/737/adafruit-huzzah-esp8266-breakout-932845.pdf		

[4]	 ExpertPower	12V	7	Amp	EXP1270	Rechargeable	Lead	Acid	Battery,	web	page.	Available	at:	
https://www.amazon.com/ExpertPower-EXP1270-Rechargeable-Lead-	
Battery/dp/B003S1RQ2S/ref=sr_1_1?ie=UTF8&qid=1487726717&sr=8-	
1&keywords=12vdc+battery).	Accessed	May	2017		

[5]		 SNAN	300W	Car	Power	Inverter	DC	12V	to	AC	110V	with	Dual	AC	Outlet	and	4.8A	Dual	USB	
Charging	Port,	web	page.	Available	at:	https://www.amazon.com/dp/B019IFYMQU?psc=1).	
Accessed	May	2017.		

[6]	 5	gallon	plastic	bucket	heater-	DPCS10,	web	page.	Available	at:	
http://www.gordosales.com/store/pc/5-gallon-plastic-bucket-heater-DPCS10-p3707.htm.	Accessed	
May	2017.	

[7]	 The	Best	Seller	G2R,	datasheet,	Omron,	2016.	Available	at:	
http://www.omron.com/ecb/products/pdf/en-g2r.pdf		

[8]				Omron	Electronics	Inc-EMC	Div	G2R-2-AC110,	datasheet,	Omron,	2016.	Available	at:	
http://www.digikey.com/products/en?keywords=Z5357-ND%20	

[9]	3FS-2XX	series,	datasheet,	tamuracorp.com,	2009.	Available	at:	
http://www.tamuracorp.com/clientuploads/pdfs/engineeringdocs/3FS-2XX.pdf	

[10]	 LM317L	3-Terminal	Adjustable	Regulator,	datasheet,	Texas	Instrument,	2014.	Available	at:	
http://www.ti.com/lit/ds/symlink/lm317l.pdf	

[11]	Thermal	Conductivity	of	common	Materials	and	Gases,	web	page.	Available	at:	
http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html.	Accessed	May	2017.		

[12]	IEEE	Code	of	Ethics,	web	page.	Available	at:	http://www.ieee.org/about/corporate/governance/p7-
8.html	

	

	

18	
	

Appendix	A	 Requirement	and	Verification	Table	
Table	3			System	Requirements	and	Verifications	 	

Requirement	 Verification	 Verification	
status		
(Y	or	N)	

Temperature	Sensor	
1. The	controller	can	use	1-

wire	protocol	to	
communicate	with	the	
sensor	and	acquire	the	
temperature	data.		

	

1.Verification	of	Time	for	Adjustment	
a. Attach	the	temperature	sensor	to	a	desk.		
b. Follow	the	transaction	sequence	as	describe	

above	to	communicate	with	the	temperature	
sensor.	

c. In	the	first	1-wire	bus	communication,	use	
SKIP	ROM	Rom	command	and	Convert	T	
function	command	to	instruct	sensor	to	
initialize	the	temperature	conversion.	

d. In	the	second	communication,	use	SKIP	ROM	
Rom	command	and	Read	Scratchpad	function	
command	to	read	the	temperature	data.	

e. Connect	the	microcontroller	to	PC	with	
Arduino	board,	once	the	microcontroller	
receives	the	data,	print	out	the	temperature	
data	in	Arduino	console.		

f. 	Use	a	thermometer	to	measure	the	desk	
temperature.	Compare	its	result	with	the	
printout	in	the	Arduino	console,	the	printout	
data	should	be	close	to	the	infrared	
thermometer	data.	

1.	Y	

Controller		
1. The	controller	should	

sample	the	temperature	
data	at	least	1Hz.	

	
2. Microcontroller	can	send	

temperature	data	to	Wi-
Fi	module	at	least	every	5	
seconds.	

	
3. The	controller	can	turn	

on	the	heating	system	
when	the	temperature	is	
below	4°C±0.5°C	and	can	
turn	it	off	when	the	
temperature	is	above	
7°C±0.5°C.		
	
	

1.	Verification	of	Sampling	Data		
a. Microcontroller	uses	1-wire	bus	protocol	to	

read	the	temperature	data	from	temperature	
from	the	sensor.	Once	it	receives	the	2-byte	
temperature	from	sensor,	it	turns	on	an	I/O	
pin	in	the	controller.	Here	we	pick	the	I/O	pin	
to	be	pin	8.	

b. Microcontroller	uses	1-wire	bus	again	to	read	
the	temperature.	Once	it	receives	it,	it	turns	
off	the	pin	8.	

c. Microcontroller	keeps	repeating	the	step	a,	b	
above.		

d. Measure	the	pin	8	output	signal	in	the	
oscilloscope,	the	frequency	should	be	at	least	
0.5Hz.		

	
2.	Verification	of	Sending	Temperature	Message	to	
Wi-Fi	module	

a. Use	oscilloscope	to	probe	the	TX	pin	of	
controller	and	we	should	see	the	controller	
send	the	data	packet	in	a	period	less	than	5	

1.	Y	
	
2.	Y	
	
3.	Y	

19	
	

seconds.		
	

3.	Verification	of	Correct	Timing	of	Switching	Heating	
System	

a. Emulating	the	1-WIRE	protocol	by	using	
another	Arduino	act	as	the	DS18B20	slave	

b. Master	issues	the	reset	bit.	Slave	response	
with	an	acknowledge	bit.	

c. Master	issues	the	data	read	command.	Slave	
doesn’t	acknowledge.	

d. Then	Slave	send	9-byte	pre-programmed	
data	to	Master	and.	

e. Repeat	above	steps	for	3	scenarios:	when	the	
temperature	data	sent	is	below	4	degree,	
when	the	temperature	data	sent	is	between	
4	to	7	degree,	when	the	temperature	data	
sent	is	above	7	degree.		

f. Connect	a	LED	in	series	with	the	heating	
system.	Observe	its	behavior,	when	the	LED	is	
off,	it	means	the	heating	system	is	off.	When	
the	LED	is	on,	the	heating	system	is	on.		

g. From	the	first	to	the	second	scenario,	the	LED	
should	be	on.	From	the	third	to	the	second	
scenario,	the	LED	should	be	off.		

	
Wi-Fi	Module		

1. The	Wi-Fi	module	must	
be	able	to	send	a	real-
time	temperature	data	to	
the	online	server	at	least	
every	10	seconds.	

	
2. The	software	in	the	PC	

can	be	able	to	receive	the	
real-time	temperature	
data	sent	from	Wi-Fi	
module	

1.	Verification	of	Wi-Fi	Module	Frequency	
a. Use	the	temperature	sensor	to	measure	the	

room	temperature.	Use	a	thermometer	to	
measure	the	room	temperature	as	a	
reference.		

b. Use	microcontroller	to	send	the	sensor’s	data	
to	the	Wi-Fi	module.	

c. Use	a	stopwatch	app	designed	in	Python	on	a	
PC	to	read	the	data	Wi-Fi	module	sent	to	the	
MQTT	online	server.	

d. The	stopwatch	app	print	out	the	data	it	
receives	and	the	time	duration	between	it	
receives	every	data.		

e. The	data	should	be	close	to	the	data	
measured	by	the	thermometer	in	Step	1	and	
the	time	duration	should	be	less	than	10	
seconds.		
	

2.	Verification	of	Software	Client	
a. The	controller	will	keep	sending	a	counter	to	

the	Wi-Fi	module	which	starts	from	0.	
b. Create	a	MQTT	software	in	python	that	

subscribes	to	the	topic	Wi-Fi	module	

1.	Y	
	

2.	Y	

20	
	

publishes	to.		
c. Once	the	software	receives	the	data,	it	prints	

it	out	immediately	in	the	console.	An	array	of	
consecutive	digital	number	should	be	
displayed	in	the	console.	

Heating	System		
1. The	heater	should	

increase	the	temperature	
of	the	water	pipe	at	least	
3℃	within	20	minutes.		

	
2. The	current	of	heating	

system	should	be	less	
than	2A	while	operating.	

1.	Verification	Process	for	Item	1:	
a. Use	thermometer	to	measure	the	

temperature	of	water	pipe	
b. Power	up	the	heating	element,	and	start	to	

time	using	the	timer	
c. Ensure	the	temperature	of	the	water	pipe	to	

increase	at	least	3℃	within	20	minutes		
	
2.	Verification	Process	for	Item	2:	

a. Attach	multi-meter	to	measure	the	current	
when	passes	the	heating	system	

b. Power	up	the	heating	element		
c. Ensure	the	current	is	always	less	than	2A	

through	the	heating	process	

1.	Y	
	
2.	Y	

Battery	System		
1. The	battery	system	must	

work	without	power	from	
wall	outlet	for	at	least	20	
minutes.	

1.	Verification	Process	for	Item	1:	
a. start	the	timer	when	the	battery	system	

starts	
b. stop	the	timer	when	the	system	stops	
c. make	sure	the	operation	time	is	at	least	20	

minutes	

1.	N	

Power	Selection		
1. The	relay	should	always	

choose	source	one	(PIN2	
and	PIN7)	when	the	coil	
voltage	within	the	range	
from	110V	AC	to	120V	
AC.		

	

1.	Verification	Process	for	Item	1:	
a. Connect	source	one	(the	one	relay	will	

choose	if	the	coil	voltage	exists)	of	the	relay	
to	120V	(amplitude),	60Hz	(frequency)	sine	
wave	(the	power	from	wall	outlet),	and	
source	two	to	ground.	

b. Connect	the	output	of	the	relay	to	the	
multimeter	in	AC	voltage	mode.		

c. Connect	the	coil	of	the	relay	to	the	same	
power	supply	from	wall	outlet.	

d. Repeat	step	c	for	different	coil	voltage:	0V	
(ground),	110V	(power	from	battery	system).		

e. Ensure	the	multimeter	will	always	reads	
nearly	120V	AC	voltage	which	is	the	power	
from	wall	outlet	when	the	coil	voltage	is	
above	110V.		

1.	Y	

AC/DC	Converter		
1. The	output	of	AC/DC	

converter	should	be	
within	the	range	of	
5V±0.5V	at	the	220mA	
(the	current	our	whole	
system	needs)	

1.	Verification	Process	for	Item	1:	
a. Attach	22W	resistor	as	the	load	
b. Attach	a	multimeter	in	DC	voltage	mode	

across	the	load	
c. Ensure	the	output	voltage	remains	in	

5V±0.5V		

1.	Y	
	
2.	Y	

21	
	

	
2. The	output	of	the	

transformer	should	be	AC	
voltage	with	in	12V±2V	

	
2.	Verification	Process	for	Item	2:	

a. Attach	a	multimeter	in	AC	voltage	mode	
across	the	secondary	side	of	the	transformer		

b. Supply	the	primary	side	of	the	transformer	
with	115V	AC	

c. Ensure	the	voltage	on	the	secondary	side	
remains	in	10V	to	14V	

	

Appendix	B		 Program	for	the	Controller		
#include	<SoftwareSerial.h>	

#include	<OneWire.h>	

	

//-----------------Temperature	Sensor	Macro-----------------	

#define	SEARCH_ROM		0xF0	

#define	READ_ROM				0x33	

#define	MATCH_ROM			0x55	

#define	SKIP_ROM				0xCC	

#define	ALARM_SEARCH		0xEC	

	

#define	CONV_T						0x44			//	Temperature	conversion	command	

#define	WRITE_SCRA		0x4E	

#define	READ_SCRA			0xBE	

#define	COPY_SCRA			0x48	

//--	

#define	CNTL_PIN	4	

#define	T_UP_BOUNCE			10		//28.5	

#define	T_LOW_BOUNCE		8		//27	

#define	LED_PIN	8	

22	
	

	

int	led_state	=	0;	

const	byte	rxPin	=	2;			//pin	2	=	digital	pin	2	=	pin	4	in	ATmega328	

const	byte	txPin	=	3;			//pin	3	=	digital	pin	3	=	pin	5	in	ATmega328	

	

SoftwareSerial	mySerial(rxPin,	txPin);	

	

//Temperature	pin	

OneWire	ds1(10);			//	on	pin	10	

OneWire	ds2(9);			

byte	addr1[8],	addr2[8];							//64-bit	ROM	addr	for	each	temperature	sensor		

	

void	setup()	{	

		Serial.begin(9600);	

		mySerial.begin(9600);	

		//Controller	pin	

		pinMode(CNTL_PIN,	OUTPUT);	

		pinMode(LED_PIN,	OUTPUT);	

		led_state	=	0;	

		Serial.print("----Start----\n");	

}	

	

void	loop()	{	

		//search	temperature	sensor	

		searchTempSensor();	

23	
	

	

		/*	

			*	Create	a	byte	array	to	hold	the	result	of	the	data.		

			*	The	first	2	bytes	are	from	sensor	1.	ret[0]	=	LowByte,	ret[1]	=	HighByte	

			*	The	second	2	bytes	are	from	sensor	2.	ret[2]	=	LowByte,	ret[3]	=	HighByte	

			*/	

		int	len	=	4;	

		byte	ret[len];						

		readSensor(ret);	

	

		//	Send	data	to	wifi	

		sendToWifi(ret,	len);		

	

		//	Control	the	heating	system	

		int	reso	=	12;	

		double	t1	=	readTemperature(ret,	reso);	

		double	t2	=	readTemperature(ret+2,	reso);	

	

		double	t_ave	=	(t1	+	t2)	/	2;	

			

		Serial.print("t1	=	");	

		Serial.print(t1);	

		Serial.print("	t2	=	");	

		Serial.print(t2);	

		Serial.print("	t_ave	=	");	

24	
	

		Serial.println(t_ave);	

	

		if(t_ave	>	T_UP_BOUNCE){	

				Serial.println("Turn	off	heating	system");	

				digitalWrite(CNTL_PIN,	LOW);	

		}	

		if(t_ave	<	T_LOW_BOUNCE){	

				Serial.println("Turn	on	heating	system");	

				digitalWrite(CNTL_PIN,	HIGH);		

		}	

	

		blink_led();	

}	

	

void	sendToWifi(byte	*data,	int	len){	

		mySerial.write(data,	len);	

		//mySerial.flush();	

}	

	

void	blink_led(){	

		if(led_state	==	0){	

				digitalWrite(LED_PIN,	HIGH);	

				led_state	=	1;	

		}	

		else{	

25	
	

				digitalWrite(LED_PIN,	LOW);	

				led_state	=	0;	

		}	

}	

	

//-----------------Temperature	Sensor	Function-----------------	

/*	

	*	This	function	search	the	devices	(temperature	sensors)	in	our	two	OneWire	bus.		

	*	Input:	

	*				Nothing	

	*	Output:	

	*				Nothing.	But	after	the	function	called,	the	addr1	and	addr2	will	be	updated.		

	*				ds1	and	ds2	will	be	ready	to	communicate	with	the	sensors.	

	*/	

void	searchTempSensor(){	

		int	success	=	0;	

		while(!success){	

				//Find	available	devices	in	the	bus	

				ds1.reset_search();		//Clear	up	all	search	memory	so	that	we	can	re-search	everything	again	

				if(!ds1.search(addr1)){	

						Serial.print("No	more	addresses.\n");	

						ds1.reset_search();	

						continue;	

				}	

				ds2.reset_search();	

26	
	

				if(!ds2.search(addr2)){	

						Serial.print("No	more	addresses.\n");	

						ds2.reset_search();	

						continue;	

				}	

	

				//Check	the	CRC	

				if(OneWire::crc8(addr1,	7)!=addr1[7]){	

						Serial.print("sensor_1	CRC	is	not	valid!\n");	

						continue;	

				}	

				if(OneWire::crc8(addr2,	7)!=addr2[7]){	

						Serial.print("sensor_2	CRC	is	not	valid!\n");	

						continue;	

				}	

					

				success	=	1;								//	If	reach	here,	we	must	have	found	the	2	sensors	

		}	

}	

	

/*	

	*	The	toplevel	function	that	read	temperature	data	from	sensors.	It	will	handle	all	the	details	of	One-
Wire	protocal	

	*	The	read	temperature	will	be	converted	to	double	number	and	stores	in	the	input	*ret	

	*	Input:	

	*				ret:	A	pointer	that	points	to	the	beginning	of	a	double	array	which	is	assumed	preallocated.	

27	
	

	*	Output:	

	*				Nothing.	But	after	the	function	called,	temperature	data	will	be	stores	in	the	ret	

	*/	

void	readSensor(byte	*ret){	

		byte	i;	

		byte	present1	=	0,	present2	=	0;	

		byte	data1[12],	data2[12];	

	

		//Request	temperature	conversion	(Write-Wait-Read	Pattern)	

		sendInst(ds1,	CONV_T,	addr1);	

		sendInst(ds2,	CONV_T,	addr2);	

		delay(750);	

	

		//Read	temperature	

		present1	=	sendInst(ds1,	READ_SCRA,	addr1);			//Return	1	is	a	device	responds	with	a	presence	pulse	

		present2	=	sendInst(ds2,	READ_SCRA,	addr2);	

	

		for(i=0;	i<9;	i++){	

				data1[i]	=	ds1.read();	

				data2[i]	=	ds2.read();	

		}	

			

		assignData(ret,	data1);		

		assignData(ret+2,	data2);	

			

28	
	

//		int	reso	=	12;	

//		ret[0]	=	readTemperature(data1,	reso);	

//		ret[1]	=	readTemperature(data2,	reso);	

}	

	

/*	

	*	Helper	function	for	readSensor.	It	will	assign	the	lowByte	of	temperature	to	the	first	byte	of	des	

	*	and	the	HighByte	to	the	second	byte	of	des	

	*/	

void	assignData(byte	*des,	byte	*data){	

		des[0]	=	data[0];			//LowByte		

		des[1]	=	data[1];			//HighByte	

}	

	

/*	

	*	This	function	is	the	general	function	of	sending	a	instruction	to	the	temperature	sensor.		

	*	Based	on	the	1-wire	protocol,	it	will	return	1	if	device	is	present,	0	otherwise.	

	*	Input:	

	*				dev:	the	one-wire	bus	where	the	data	is	sending	through	

	*				inst:	the	instruction	we	want	to	send	(it	is	one	byte	long)	

	*				addr:	the	address	of	device	we	want	to	send	the	instruction	to.	

	*	Output:	

	*				present:	present	bit	received	from	device.	1	if	device	is	present,	0	otherwise.		

	*/	

int	sendInst(OneWire	dev,	char	inst,	byte	addr[]){	

29	
	

		int	present	=	dev.reset();	

		dev.select(addr);	

		dev.write(inst);	

		return	present;	

}	

	

/*	

	*	This	function	will	convert	the	input	byte	array	'data'	

	*	into	temperature	in	degree	Celsius		

	*	Input:	

	*				data:	a	pointer	points	to	a	2-byte	array	which	stores	lowerByte	+	higherByte	(in	sequence)	of	the	
temperature	data.	

	*				resolution:	the	resolution	of	the	temperature	data.	We	have	4	options:	9-12	bit	

	*	Output:	

	*				a	double	number	which	is	the	temperature	in	degree	Celsius.		

	*/	

double	readTemperature(byte	*data,	int	resolution){	

		int	LowByte,	HighByte,	SignBit;	

		int	T;						//	The	temperature,	it	has	to	be	the	int	type	not	the	double	b/c	we	want	to	do	bitwise	
operation	

		LowByte	=	data[0];	

		HighByte	=	data[1];	

	

		T	=	(HighByte	<<	8)	+	LowByte;	

		SignBit	=	T	&	0x8000;			//Read	the	Most	siginficant	bit	

		if(SignBit){						//	Negative	temperature	

30	
	

				T	=	(T	^	0xffff)	+	1;	//	2's	compliment	

		}	

	

		double	result;			

		switch(resolution){	

				case	9:	

						T	=	T	&	(~0x0007);					//	Clear	0~2	bit	to	zero	

						T	=	T	>>	3;	

						result	=	0.5	*	T;	

						break;	

				case	10:	

						T	=	T	&	(~0x0003);					//	Clear	0~1	bit	to	zero	

						T	=	T	>>	2;	

						result	=	0.25	*	T;	

						break;	

				case	11:	

						T	=	T	&	(~0x0001);					//	Clear	0	bit	

						T	=	T	>>	1;	

						result	=	0.125	*	T;	

						break;	

				default:	

						result	=	0.0625	*	T;		

						break;	

		}	

	

31	
	

		//If	temperature	is	negative	

		if(SignBit){	

				result	=	-result;	

		}	

		return	result;	

}	

Appendix	C		 Program	for	the	Wi-Fi	Module		
#include	<ESP8266WiFi.h>	

#include	<PubSubClient.h>	

#include	<SoftwareSerial.h>	

	

#define	BLUELED	2	

#define	REDLED	0		

	

const	byte	rxPin	=	12;				

const	byte	txPin	=	14;				

SoftwareSerial	mySerial(rxPin,	txPin);	

	

//-----------------WiFi	Variable-----------------	

const	char*	ssid					=	"IllinoisNet_Guest";	

const	char*	password	=	"password";	

//MQTT	Setting	

const	char*	mqtt_server	=	"m13.cloudmqtt.com";//"mqtt.thingspeak.com";//"broker.hivemq.com";	

const	char*	clientName	=	"ESP8266Client";	

char*	mqtt_user	=	"txzacqlp";	

32	
	

char*	mqtt_password	=	"yXkhY-YQdmkS";	

	

WiFiClient	espClient;		

PubSubClient	client(espClient);	

	

//	track	the	last	connection	time	

unsigned	long	lastConnectionTime	=	0;	

////	post	data	every	1	seconds	

//const	unsigned	long	postingInterval	=	1L	*	1000L;	

//---	

	

void	setup(){	

		Serial.begin(9600);	

		//mySerial.begin(9600);	

		setup_wifi();	

		client.setServer(mqtt_server,	18568);	

		//client.setServer(mqtt_server,	1883);	

	

		pinMode(BLUELED,	OUTPUT);							//	Pin	2	control	the	blue	LED	

}	

	

void	loop(){	

			

		//	Read	from	controller	

		double	tempData[2];	

33	
	

		int	alarm;	

		readFromController(tempData,	&alarm);	

	

		//	Ensure	the	network	connection	

		if	(!client.connected())	{	

				reconnect();	

		}	

		client.loop();	

	

		Serial.print("Sending	data\n...");	

		Serial.print("t1	=	");	

		Serial.print(tempData[0]);	

		Serial.print("	t2	=	");	

		Serial.println(tempData[1]);	

	

		double	ave_t	=	(tempData[0]	+	tempData[1])/2;	

		if(mqttpublish(ave_t)){	

				digitalWrite(BLUELED,	HIGH);	

		}	

	

		delay(900);			//	read	a	bit	faster	than	controller	

		digitalWrite(BLUELED,	LOW);			//	Close	the	Blue	LED	

}	

	

/*	

34	
	

	*	This	function	will	read	data	from	controller	who	is	sending	the	temperature	and	alarm	data	

	*	through	the	UART	protocol.	This	function	will	also	convert	these	data	from	byte	to	digital	number	

	*	and	store	the	values	into	the	input	point	*tempData	and	alarm	respectively.	

	*	Input	

	*				tempData:	a	pointer	that	points	to	an	array	of	double.	It	assumes	that	the	data	is	preallocated.	

	*				alarm:	a	pointer	points	to	a	int.	It	assumes	that	it	is	preallocated.	

	*	Output	

	*				Return	nothing.	But	after	function	called,	*tempData	and	alarm	will	be	updated.	

	*/	

void	readFromController(double	*tempData,	int	*alarm){	

		int	len	=	4;	

		byte	data[len];	

		int	flag	=	0;	

	

//		while(!Serial.available()){	

//		}	

//		Serial.readBytes(data,	len);	

//		flag	=	1;	

	

		if(Serial.available()){	

				Serial.readBytes(data,	len);	

				flag	=	1;	

		}	

	

//			

35	
	

//		if(mySerial.available()){	

//				mySerial.readBytes(data,	len);	

//				flag	=	1;	

//		}	

	

		if(flag){	

				int	reso	=	12;	

				tempData[0]	=	readTemperature(data,	reso);	

				tempData[1]	=	readTemperature(data+2,	reso);		

		}	

}	

	

/*	

	*	This	function	will	convert	the	input	byte	array	'data'	

	*	into	temperature	in	degree	Celsius		

	*	Input:	

	*				data:	a	pointer	points	to	a	2-byte	array	which	stores	lowerByte	+	higherByte	(in	sequence)	of	the	
temperature	data.	

	*				resolution:	the	resolution	of	the	temperature	data.	We	have	4	options:	9-12	bit	

	*	Output:	

	*				a	double	number	which	is	the	temperature	in	degree	Celsius.		

	*/	

double	readTemperature(byte	*data,	int	resolution){	

		int	LowByte,	HighByte,	SignBit;	

		int	T;						//	The	temperature,	it	has	to	be	the	int	type	not	the	double	b/c	we	want	to	do	bitwise	
operation	

36	
	

		LowByte	=	data[0];	

		HighByte	=	data[1];	

	

		T	=	(HighByte	<<	8)	+	LowByte;	

		SignBit	=	T	&	0x8000;			//Read	the	Most	siginficant	bit	

		if(SignBit){						//	Negative	temperature	

				T	=	(T	^	0xffff)	+	1;	//	2's	compliment	

		}	

	

		double	result;			

		switch(resolution){	

				case	9:	

						T	=	T	&	(~0x0007);					//	Clear	0~2	bit	to	zero	

						T	=	T	>>	3;	

						result	=	0.5	*	T;	

						break;	

				case	10:	

						T	=	T	&	(~0x0003);					//	Clear	0~1	bit	to	zero	

						T	=	T	>>	2;	

						result	=	0.25	*	T;	

						break;	

				case	11:	

						T	=	T	&	(~0x0001);					//	Clear	0	bit	

						T	=	T	>>	1;	

						result	=	0.125	*	T;	

37	
	

						break;	

				default:	

						result	=	0.0625	*	T;		

						break;	

		}	

	

		//If	temperature	is	negative	

		if(SignBit){	

				result	=	-result;	

		}	

		return	result;	

}	

	

//-----------------WiFi	Function-----------------	

/*	

	*	This	function	will	set	up	the	WiFi	connection	in	ESP8266	

	*	WiFi	will	be	set	up	after	function	called	

	*	Input:	None	

	*	Output:	None	

	*/	

void	setup_wifi(){	

		delay(10);	

		Serial.print("\nConnecting	to	");	

		Serial.println(ssid);	

	

38	
	

		WiFi.begin(ssid,	password);	

			

		while	(WiFi.status()	!=	WL_CONNECTED)	{	

				delay(500);	

				Serial.print(".");	

		}	

			

		Serial.println("");	

		Serial.println("WiFi	connected");			

		Serial.println("IP	address:	");	

		Serial.println(WiFi.localIP());	

}	

	

/*	

	*	This	function	will	try	to	reconnect	ESP8266	to	the	WiFi	

	*	If	it	continuously	fails	to	connect	to	the	WiFi,	it	will	delay	for	a	while	before	trying	again.		

	*/	

void	reconnect()	{	

		//	Loop	until	we're	reconnected	

		int	retryDelayTime	=	2000;	

			

		while	(!client.connected())	{	

				Serial.print("Attempting	MQTT	connection...");	

				//	Attempt	to	connect	

				if	(client.connect(clientName,	mqtt_user,	mqtt_password))	{	

39	
	

						Serial.println("connected");	

				}	else	{	

						Serial.print("failed,	rc=");	

						Serial.println(client.state());	

						Serial.println("sleep...try	again	later");	

						delay(retryDelayTime);	

				}	

		}	

}	

	

/*	

	*	This	function	handle	the	MQTT	publishment.	It	takes	a	temperature	and	alarm		

	*	as	input	and	will	publish	these	data	onto	ThingSpeak	broker.	

	*	Input:	

	*				temperature:	the	temperature	data	we	want	to	publish	

	*				alarm:	the	alarm	data	we	want	to	publish	

	*	Output:	

	*				Return	1	if	pulish	succeeded,	0	otherwise.	

	*/	

int	mqttpublish(double	temperature){	

		char	msgBuffer[1024];		

		//	Convert	data	from		

		dtostrf(temperature,	4,	3,	msgBuffer);				//	dtostrf(double	#,	the	width	of	string,	precision,	buffer)	
assume	buffer	has	large	enough	memory	

		Serial.println(msgBuffer);	

	

40	
	

		//	Construct	topic	

		char*	topic	=	"ece445/waterpipe/esp8266";		

	

		//	Publish	data	to	HiveHQ	

		int	ret	=	client.publish(topic,	msgBuffer);	

		if(ret){	

				Serial.println("MQTT:	publish	msg	succeeded.");	

		}	

	

		//	Note	the	last	connection	time	

		lastConnectionTime	=	millis();	

	

		return	ret;	

}	

Appendix	D		 Program	in	User-end	(Python)	
import paho.mqtt.client as paho
import matplotlib.pyplot as plt
import numpy as np

numData = 100

def on_connect(client, userdata, flags, rc):
 print("“CONNACK received with code %d." % (rc))

This function is called once the broker has responded to a subscription request
def on_subscribe(client, userdata, mid, granted_qos):
 print("Subscribed: " + str(mid) + " " + str(granted_qos))

def on_message(client, userdata, msg):
 # print("Receive from Topic:" + msg.topic + "\nQoS:"+str(msg.qos) + "\nMsg:" +
str(msg.payload))
 global temp
 global cnt
 if cnt == numData:
 cnt = 0

 upperBound = 10
 lowerBound = 8
 temp[cnt] = float(msg.payload)

41	
	

 print("Water pipe temperature: ", temp[cnt])
 if temp[cnt] < lowerBound:
 print("Alert! Water pipe temperature is too low!")
 if temp[cnt] > upperBound:
 print("Water pipe temperature is heated above the required threshold.")
 cnt += 1

mqtt_user = "txzacqlp"
mqtt_password = "yXkhY-YQdmkS"

client = paho.Client()
client.on_subscribe = on_subscribe
client.on_message = on_message

client.username_pw_set(mqtt_user, mqtt_password)
client.connect("m13.cloudmqtt.com", 18568)
client.connect("broker.hivemq.com", 1883)

subTopic = "ece445/waterpipe/esp8266"
client.subscribe(subTopic)

ranlow = 5; ranup = 14
time = np.arange(numData)
temp = np.zeros(numData)
cnt = 0
plt.axis([0,numData,ranlow,ranup])
plt.ion()
plt.scatter(time, temp, c='lightgreen')
plt.xlabel("Time Frame (per second)")
plt.ylabel("Water Pipe Temperature")
plt.title("Real Time Water Pipe Temperature")

client.loop_forever()
client.loop_start()
while True:
 plt.scatter(time, temp, c='lightgreen') # you can pick color at here
https://matplotlib.org/users/colors.html#cn-color-selection
 plt.pause(0.5)		

42	
	

Appendix	E	 PCB	Layout		

	

