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Team 49-Head Trauma Data Transmission and Logging 

ECE 445 Spring 2017 

Abstract 

The Head Trauma Data Transmission and Logging system is a device that t has the capability of 

collecting accelerometer data, inferring linear and rotational acceleration, and transmitting the 

data to a sideline application via Bluetooth. The device’s purpose is to be used as a data 

collection device to collect accurate data which can be used in traumatic head injury research. 
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1 Introduction 

1.1 Objective  

Research suggests that there are as many as 3.8 million sports-related concussions in the 

United States every year and this number shows no signs of decreasing [1].  From high school 

athletics to the NFL, concussion rates are actually increasing annually.  NFL athletes have 

remarked that if concussions don’t happen on every play, then they occur on every other or every 

third play. Consequently, athletes end up playing through concussions and not getting immediate 

care. 

The main reason no system exists to better monitor concussions is because there are 

numerous factors that play a role, including individual genetics.  In addition, there simply is not 

enough data to enable research in this area.  Our project hopes to address a few of these obstacles.   

In conjunction with TEAM 55, the goal is to design a wearable device for athletes that has 

the capability of collecting heart rate and accelerometer data, wirelessly transmitting the data, 

performing particular algorithms, and storing the data for future analytics in the long term.  Our 

team will be responsible for the latter half of the project.  Specifically, our team plans to generate 

data on a Raspberry Pi, transmit the data wirelessly to our PCB, run our algorithm to gain insights, 

and wirelessly transmit the data to an Android application that can save the data for long-term 

storage.  We hope that this device will provide insightful information that can be used in research 

for years to come.  Additionally, we hope to address the feasibility of designing such a device and 

what tradeoffs it presents. 

1.2 Background 

 To date, a few systems do exist that try to address the media’s concern around increasing 

concussions in athletics.  For example, the Head Impact Telemetry System (HITS) was designed 

by Simbex in an effort to measure and record head impact exposure [1].  However, HITS, as well 

as other devices, only collects accelerometer data.  In addition, some of the devices try to predict 

concussions and alert coaches and/or trainers on the sidelines when a high-impact hit was 

made.  Lastly, some devices are built into helmets, which might compromise the integrity of a 

helmet and would not be easily adopted by the  NFL, for example.  To summarize, current devices 

are limited by pure accelerometer data and provide no additional insights into the increasing 

amount of concussions.   

 Our design will be the first to simultaneously collect heart rate data and accelerometer data. 

However, it is important to note that we will not try to diagnose concussions, as this is not possible 

to do at the time of impact and will require detailed analysis by qualified medical researchers and 

professionals.  We will simply analyze our data to infer impact locations and rotation of the rigid 

body to help enable research, as well as time lock this data to the player’s heart rate.  This data 

will then be available for coaches and/or trainers on the sideline before the start of the next play. 

1.3 High Level Requirements 

• Data resolution: In order to collect accurate accelerometer data, we will sample at 1000 Hz 

[11].  

• Algorithm accuracy: In order to make use of the collected data, the algorithm should 

determine acceleration in six degrees of freedom for a rigid body with accuracy allowing 

+/- 10% error.  Accuracy will be calculated based on simulated data. 
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• Scalability: The design must be capable of handling a varying number of accelerometers, 

with an upper limit set by the largest acceptable time delay before seeing data appear on 

the application.  Beyond this, scaling requires an upgrade in processing power. 

• Wearability: All hardware components, i.e. Bluetooth module and microcontroller, must 

fit within a volume of 101 x 42 x 20 mm. This is to ensure that our design can be worn by 

a player without significantly infringing on their normal movement and 

uniforms/protective wear. 

2 Design 

2.1 Block Diagram 

 
Figure 2-1 High Level Block Diagram 

 

 The Team 55 Simulated Input  block is the source of filtered data that will be wirelessly 

transmitted to our microcontroller from a Raspberry Pi.  In case of transmission failure, the 

Raspberry Pi will also write the data to a microSD to ensure data is not lost.  This block essentially 
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resembles Team 55’s portion of the overall design.  If needed, the microSD card from the 

Raspberry Pi will be inserted into a connector that is soldered to the board that will communicate 

with the microcontroller through SPI transmission traces. This is the In-Case-of-Failure block. 

The Data Transmission block consists of a Bluetooth module that will receive the data wirelessly 

from the Raspberry Pi and send it to the microcontroller in the Processing block.  The 

microcontroller will process the data by running the algorithm, and then transmit the data to a 

mobile application/computer (Data Presentation block) via the Bluetooth module.  AWS will be 

used for Long-Term Data Storage.  The Power block consists of a lithium ion rechargeable 3V 

battery, a switch to turn off power to the board, a PTC fuse for excess current protection, an 

UV/OV lockout protection IC for undervoltage and overvoltage protection, a 5 V boost IC to step 

the voltage up from 3V to 5V for the microcontroller and Bluetooth module, and a 3 V linear 

voltage regulator to ensure a consistent 3V power supply for the microSD. 

2.2 Design Detai ls 

2.2.1 Input  

To emulate Team 55’s wearable device that collects real-time acceleration and heart rate 

data,  three tri-axle accelerometers and a Raspberry Pi will be used.  In order to collect accurate 

accelerometer data, the Raspberry Pi should sample at a frequency of 1000 Hz [3].  Since each 

accelerometer sample will collect 16 bits per sensing axis, one impact sample will total 144 bits 

just for acceleration (3 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟𝑠 × 3
𝑎𝑥𝑖𝑠

𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟
 × 16

𝑏𝑖𝑡𝑠

𝑎𝑥𝑖𝑠
). 8 bits will be used for each 

simulated heart rate sample since they can represent a maximum heart rate of 256 BPM.  To 

calculate how much memory will be stored per game, a few parameters need to be set.  Each 

impact event will include 50 samples of accelerometer data since an average impact lasts less 

than 50 ms.  Additionally, heart rate will be calculated as a running average every second.  Since 

our goal is to learn how a player’s heart rate changes from before, during, and after an impact 

event, heart rate will be calculated every second for an entire minute, resulting in 60 heart rate 

samples.  The average amount of plays in an NFL game is about 65, so if a skill position player 

(i.e. running back) saw about half of the plays and experienced an impact on each of those plays, 

the player would experience about 30 impacts per game.  This amounts to less than half a MB of 

data per game, which does not impose any strict requirements on the size of the microSD card. 

 

(144
𝑏𝑖𝑡𝑠

𝑠𝑎𝑚𝑝𝑙𝑒
 × 50

𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖𝑚𝑝𝑎𝑐𝑡
+ 8

𝑏𝑖𝑡𝑠

𝑠𝑎𝑚𝑝𝑙𝑒
× 60

𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖𝑚𝑝𝑎𝑐𝑡
) × 30

𝑖𝑚𝑝𝑎𝑐𝑡𝑠

𝑔𝑎𝑚𝑒
 × 1

𝑀𝐵

8×106 𝑏𝑖𝑡𝑠
  

=  0.23 𝑀𝐵 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑒𝑟 𝑔𝑎𝑚𝑒 (1) 

If a microSD card needs to be used to recover data that wasn’t transmitted in real-time, it 

can be inserted into the connector on the PCB and used as the source of the data for the algorithm. 

On our PCB, the microSD card requires a voltage input of 2.7-3.6 V [16]. The voltage being 

supplied from the lithium-ion battery is 3 V. Therefore, the input voltage needs to be within 10% 

of 3 Volts to satisfy the microSD power requirement.  Lastly, the average amount of data collected 

for one player over the course of a game will be less than 0.5 MB.  This does not impose any strict 

requirements on the size of microSD card we use. 
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2.2.2 Data Transmission 

 The Data Transmission block is comprised of a Bluetooth module. The RasPi will be 

responsible for sending data collected from the accelerometers to the Bluetooth module which in 

turn will send the data to the microcontroller for processing. Once the microcontroller has finished 

processing the data, it will transmit the results to the Bluetooth module and from there to the 

Bluetooth connected device. It is important to keep in mind that due to the limited memory 

available to us on the microcontroller, we will be sending a single data point per transmission to 

ensure that the algorithm fits and we still have space left for a potential state machine and other 

auxiliary code. Additionally, since it is important to protect the players, the data should all be 

transferred to the sideline after a major collision within 40 seconds since that is the amount of time 

between plays in the NFL. 

 
2.2.3 Power 

The power block consists of a lithium-ion rechargeable 3V battery, a switch to turn off 

power to the board, a PTC fuse for excess current protection, an UV/OV lockout protection IC for 

undervoltage and overvoltage protection, a 5 V boost IC to step the voltage up from 3 V to 5 V, 

and a 3 V linear voltage regulator to ensure a consistent 3 V power supply. The battery chosen is 

a 3 volt battery that uses the undervoltage/overvoltage, 3 V linear regulator, and 5 V boost to 

ensure an accurate 3 V and 5 V is supplied. The linear regulator accepts 2.7-5.5 V [6], the microSD 

accepts 2.7-3.6 V [16] and the UV/OV protection IC accepts 2.5-34 V [8]. Therefore, the limiting 

factors on the 3 V input voltage are the microSD card and linear regulator which require the voltage 

to be within 10% of 3 V. Since the microcontroller accepts 1.8-5.5 V but needs 5 V to run at its 

highest clock speed [7] and the Bluetooth module accepts 3.6-6 V [9], the microcontroller is the 

limiting factor on the 5 V power supply. Therefore, the 5 V supply needs to be within 10% of 5 V. 

Additionally, the microSD requires up to 200 mA [16], the UV/OV protection IC requires 

up to 125 μA [8], the Bluetooth module requires up to 35mA [9], the linear regulator requires up 

to 385 μA [6], the 5V boost module requires up to 15mA [15], and the microcontroller IC requires 

up to 100 mA [7], so the maximum total current required for the PCB will be approximately 350.51 

mA. However, the battery should be capable of supplying more current than this and the PTC fuse 

is set to fault at 500 mA in case there are additional resistive losses that would draw unforeseen 

current.  

For power protection purposes, the undervoltage/overvoltage lockout protection IC is used. 

In terms of an open or short applied to the circuit, the PTC fuse protects the circuit in the case of 

a short. In the event of an open, the UV/OV protection will not allow the circuit to operate and no 

damage will be done. The linear regulator is used to keep the voltage level constant rather than 

fluctuating within the range allowed by the UV/OV IC. Additionally, the linear  regulator has built-

in undervoltage protection. However, since it does not have overvoltage protection, the UV/OV 

protection is still needed in case someone inserts a higher voltage battery accidentally.  

Furthermore, for real world use cases the unit should be able to function throughout the 

course of a whole game of any sport. Assuming that the upper limit on this requirement is three 

hours, the battery should be able to power the device at its average load current for three hours. 

The average load current, assuming real time data is being used (microSD in sleep mode), is 350 

μA for the microSD [16], 9.46 mA for the microcontroller [7], 35 mA for the Bluetooth module 

[9], 125 μA for the UV/OV IC [8], 385 μA for the linear regulator [6], and 3.8 mA for the 5V boost 

module [15], which comes out to be 49.12 mA total. In terms of scalability, with more 

accelerometers more power would be required, however for the purpose of our half of the project 
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we do not supply power to the accelerometers. But, if enough accelerometers are used then a faster 

processor may be needed which in turn would require more power. 

The UV/OV IC has a procedure in the datasheet to determine the values of the resistors for 

the external resistor divider network [8]. As mentioned above, the lower threshold was determined 

to be 2.7 V while the high threshold was determined to be 5.5 V. The resistor values were 

calculated using these threshold values but due to the nature of what standard resistor values are 

available, with the closest standard values to the calculated values picked, it was determined that 

1.3 Mohm, 154 kohm, and 147 kohm resistors would be used. This gives a threshold range of 2.67-

5.45 V. Since the resistors are 1% accuracy resistors and there is a maximum voltage offset used 

in the calculation due to leakage flux, these threshold values should be within 5% of 2.7 V and 5.5 

V in order for the UV/OV IC to be considered working properly. 

 
2.2.4 Processing 

The Processing block consists of an ATmega328 microcontroller IC.   This 

microcontroller will be responsible for all incoming data, processing of this data, and transmission 

of the enriched data.  These tasks will be handled by two main components: a state machine and 

the algorithm that determines linear and rotational acceleration from accelerometer data.  In its 

current state, the microcontroller’s software takes up approximately 12 KB of data, which is about 

a third of the ATmega328’s flash memory (32 KB).    

 
2.2.4.1 Algorithm 

Our algorithm has one main objective: to infer the linear and rotational acceleration of the 

head’s center of gravity.  This results in six degrees of freedom that describe the motion of a rigid 

body upon impact [5].  The acceleration at any point, i, on the head, �⃗�𝑖, undergoing linear and 

rotational acceleration can be described by:  

 

||�⃗�𝑖|| = 𝑟𝑎𝑖
⃗⃗ ⃗⃗⃗ ∙ �⃗⃗⃗� + 𝑟𝑎𝑖

⃗⃗ ⃗⃗⃗ ∙ (�⃗⃗�×𝑟𝑖⃗⃗⃗) (2), 

 

where 𝑟𝑎𝑖
⃗⃗ ⃗⃗⃗ is the sensing access of the accelerometer, �⃗⃗⃗� is the linear acceleration of the head’s center 

of gravity, �⃗⃗� is the rotational acceleration of the head’s center of gravity, and 𝑟𝑖⃗⃗⃗ is the position 

vector of the accelerometer.  All parameters are known except �⃗⃗⃗� and �⃗⃗�.  Equation (2) is an equality 

relating the acceleration an accelerometer reads and the actual linear and rotational acceleration a 

rigid body experiences.  Ideally, �⃗⃗⃗� and �⃗⃗� are chosen such that the equality holds true.  Therefore, 

we define a loss function to minimize the error between the two sides of (2):  

 

𝑚𝑖𝑛

�⃗⃗⃗�,�⃗⃗�∈ℜ3  ∑ ∑ [||𝑎𝑖𝑗
|| − (𝑟𝑎𝑖𝑗

⃗⃗ ⃗⃗ ⃗⃗ ∙ �⃗⃗⃗� + 𝑟𝑎𝑖𝑗
⃗⃗ ⃗⃗ ⃗⃗ ∙ (�⃗⃗�×𝑟𝑖𝑗

⃗⃗ ⃗⃗ ))]3
𝑗=1

𝑛
𝑖=1

2

(3), 

 

where n is the number of accelerometers being used.  To solve this optimization problem, a 

gradient descent algorithm will be used to estimate �⃗⃗⃗� and �⃗⃗� . 

To ensure that the Atmega328p can handle the necessary computations in real-time, we 

have simulated our algorithm in Python to better understand how long it will take to process 

incoming data.  The ATmega328p achieves throughput at about 1 MIPS per 1 MHz.   It also 

operates at 20 MHz.  This allows for 20 ×106 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
: 
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1
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

𝑐𝑦𝑐𝑙𝑒
 × 20 ×106 𝑐𝑦𝑐𝑙𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
= 20 ×106 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
 (4), 

 

Our simulated gradient descent algorithm is primarily broken up into two main components 

(while loops).  The first component checks if we have achieved the minimum of our loss 

function.  If the minimum has not been achieved, we move in a direction opposite of the gradient 

by a varying step-size.  On average, it takes approximately 100 iterations (steps) to achieve the 

minimum when using 3 accelerometers.  Each iteration is composed of multiple calculations, such 

as 2-norms, multiplications, subtractions, assignments, and comparisons.  These calculations are 

primarily due to the 1000 function evaluations and 1500 gradient evaluations that take place.  To 

evaluate the function once, it takes approximately 234 operations, due mostly to the cross and dot 

products.  To evaluate the gradient of the function, it takes approximately 297 operations for the 

same reason.  In total, about 750,000 operations (additions, multiplications, subtractions) are 

evaluated for the gradient descent algorithm to converge at its minimum.  Since each impact event 

totals 50 samples, it will take approximately 1.875 seconds to process a full impact event’s data 

using the algorithm. 

 

750,000
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡
 × 50 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 ÷ (20×106 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
) = 1.875 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 (5) 

 
2.2.5 Wearability/Size 

 As mentioned in the high-level requirements, the device needs to be compact enough as 

not to inhibit the athlete while they are competing. With that being said, the size of the device 

comes down to the hardware constraints. For this initial prototype, in terms of size we are limited 

by hand soldering capabilities. For instance, all resistors and capacitors are size 0603 with a larger 

footprint for hand soldering whereas if this device were to be mass produced, a pick and place 

machine would be used along with either 0402 or 0201 sized passive components. Additionally, 

the microSD slot that is being used is a vertical one because it is all through hole and hand 

solderable. For production purposes, a smaller surface mount socket could be used so it wouldn’t 

stick up off of the board. Similarly, a surface mount package for the microcontroller could be used 

for space saving characteristics. Furthermore, the Bluetooth module is connected to the PCB via a 

cable and four-pin header soldered to the PCB. As this sounds, it is not very space effective. The 

reason for choosing this method was because the module would have been extremely difficult to 

hand solder and debug if there were any solder issues. Again, in production this would be soldered 

to the surface of the board with a pick and place machine and take up much less space. 

 As for power, the battery holder is being used so the battery can be removed to be charged. 

For convenience for the end users, in production a battery charging circuit would be implemented 

on the board along with a connector, so a typical 5V AC to DC power cord could be used to charge 

the device. The battery could then be soldered to the board, eliminating the size of the battery 

holder but adding the size of the charging circuit and charger port, ultimately, similar in size. 
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2.3 Verif ications 

Table 2.3-1: Requirement and Verification Table 

Requirements Verification Points 

Input Total 

Points: 

8 

1. Continuously store the 

data from each impact 

(23,200 bits) on microSD 

and transmit wirelessly to 

PCB Bluetooth module. 

Connect device to Raspberry Pi via Bluetooth 

and insert microSD into Raspberry Pi. Collect 

accelerometer data, which should be received 

wirelessly, in real-time. Remove microSD card 

from the Raspberry Pi and plug into 

computer.  Check that the data was written to the 

microSD. 

 

 

 

 

4 

2. PCB accurately reads at 

least 95% of the data from 

the microSD card. 

Connect the programmed microcontroller to the 

Arduino. Execute the program and compare the 

data written to the Serial Monitor against the 

data that was on the microSD card. 

 

 

4 

Data Transmission Total 

Points: 

10 

1. Ability to transfer data via 

Bluetooth at 9600 bit/s 

baud rate within 

approximately 40 seconds. 

Run the algorithm on a full impact event’s 

dataset and time it by hand.   

 

5 

2. Transmit 23,200 bits total 

for accelerometer and 

heart rate data for one 

impact event. 

View 50 estimates of linear and rotational 

acceleration, given by running the algorithm, as 

well as 50 heart rate samples, all on a Bluetooth 

connected device. 

 

 

5 

Power Total 

Points: 

12 

1. Supply voltage within 10% 

of 3 Volts. 

Apply a voltage meter between ground and the 

output pin of the linear regulator to verify that 

the voltage is within 10% of 3 Volts. 

 

2 
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2. Supply voltage within 10% 

of 5 Volts. 

Apply a voltage meter between ground and the 

output pin of the 5 V boost IC to verify that the 

voltage is within 10% of 5 Volts. 

 

2 

3. Supply 500 mA at 3 Volts. Use a breadboard and resistors to set a resistive 

load of 6 ohms within 5% which would draw 500 

mA at 3 V. Use voltmeter to verify voltage is still 

within 10% of 3 V. 

 

 

2 

4. Supply average current, 49 

mA, for three hours. 

Use a breadboard and resistors to set a resistive 

load of 60 ohms within 5% and verify after three 

hours that the battery is still within 10% of  3 V 

with a volt meter. 

 

 

2 

5. UV/OV lockout within 5% 

of 2.7 and 5.5 V 

Use a DC power supply as the input to the PCB. 

Slowly vary the voltage near the limits and 

record when the UV/OV IC no longer allows 

voltage to pass through. Ensure these values are 

within 5% of their respective limits. 

 

 

4 

Processing/Algorithm Total 

Points: 

10 

1. Calculate linear and 

rotational acceleration of 

the rigid body to 

within  +/- 10% of test 

data. 

Run the algorithm on accelerometers’ datasets 

and compare the estimated linear and rotational 

accelerations against generated values in Unity. 

 

 

5 

2. Generate test data by 

creating a Unity simulation 

and an accelerometer 

Simulink block.  

Demonstrate the process of running the Unity 

simulation, exporting relevant data to simulink, 

and storing test data in text files. 

 

5 

Wearability/Size Total 

Points: 

10 

1. Device fits within 101 x 42 

x 20 mm. 

A caliper or similar measuring device will be 

used to ensure the device is within these limits. 

 

5 

2. Size scaling compared to 

power consumption, 

processing speed, and 

accuracy. 

Explain how increasing the number of 

accelerometers (accuracy) will ultimately affect 

the size of the device. 

 

5 
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2.3.1 Input 

 As per our initial design considerations, we attempted to use a RasPi to transmit 

accelerometer data to our microcontroller. Unfortunately, in the process of implementing this 

feature we ran into a variety of issues that forced us to abandon this original piece of the design. 

One of the first issues we experienced was soon after establishing communication between 

the microcontroller and the RasPi. After our initial tests of sending simple data, such as an on/off 

signal to control an LED, were successful we attempted to get that data to do a full round of travel, 

i.e. to transmit from the RasPi, to the microcontroller, and then to a Bluetooth connected tablet. 

The issue here was three fold. One, the bluetooth module we selected was a slave chip which 

means that while it can accept connection requests from other devices, it can not attempt to 

establish those connections itself. Since our state machine controlled the flow of data and was 

implemented on the microcontroller, it was necessary for it to be able to make Bluetooth 

connections by itself. Instead, with our Bluetooth module the microcontroller was forced to wait 

for the RasPi or tablet to make a connection. Now the obvious solution was to purchase a master 

Bluetooth module, and it was an idea that was pursued until we ran into our second issue. Namely, 

the problem now was discovering that the average time for Bluetooth to establish a connection is 

about 0.79 seconds [13]. This added time was simply too long to be feasible because our design 

would require the microcontroller to connect, drop, and reconnect with the RasPi and tablet 

multiple times for each set of data. Also, since the full device, i.e. our project combined with Team 

55’s, would directly connect the accelerometers to the microcontroller, using Bluetooth to transmit 

that data was seen as an unnecessary task. Now the third and final issue that ultimately forced us 

to abandon this component entirely was the fact that the microcontroller could not read any of the 

data from the microSD card that the RasPi had written. This was due to the fact that the RasPi’s 

microSD card stored an operating system that the RasPi used to boot.  Although the RasPi could 

write data to this microSD card, the microcontroller could not access the file system because it 

could not interpret the overlying operating system.  The microSD card was included to serve as a 

backup for data storage, in case of Bluetooth transmission failure, but since the microcontroller 

cannot read that data there was no feasible way to incorporate the RasPi into the design. 

Despite this setback, we still needed some method of getting accelerometer data to feed 

into the algorithm. To this end it was suggested that we use a program called Unity in conjunction 

with a Simulink block to generate test data. Through Unity we gained access to a physics engine 

which could be used to collect data about the dynamics of a “rigid body”. A rigid body is a 

component that can be attached to objects, such as spheres and cubes, to allow the physics engine 

to work on the object. For our purposes, we modeled the head as a sphere and the accelerometers 

as cubes. For the purposes of scalability, we used the Fibonacci Sphere algorithm to generate n 

evenly distributed points on the sphere where we could place n cubes. Without the Fibonacci 

Sphere algorithm there would be no easy way to place an arbitrary number of cubes on the sphere 

since Unity required exact coordinates to place the cubes. So from Unity we could collect the linear 

positions, angular velocities, and the center of mass of the cubes and sphere. This data was then 

exported to Matlab where a script calculated the linear velocity, linear acceleration, and angular 

acceleration, all of which were passed into the Simulink accelerometer block. This block would 

then produce accelerometer data, which another Matlab script would save into a text file, for us to 

pass into our algorithm.   

Now although we had test data, it came with its own set of concerns. Initially the main 

worry was the fact that regardless of how many points of data we fed into the Simulink block, it 

would always output 101 points. Additionally, feeding one of the test accelerometer values into 

the algorithm would result in values of linear and rotational acceleration that did not match the 
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values recorded by Unity and Matlab for the sphere. The lack of any clear and helpful 

documentation or tutorials for the Simulink block made it difficult to debug the issue we were 

experiencing, and unfortunately we were unable to determine the problem before our demo. 

However, it is important to mention that even though we could not verify the accuracy of the 

algorithm using our test data, we could still use it to measure other parameters such as the 

algorithm’s speed of convergence and the effect of varying the number of accelerometers used. 

Also, the accuracy of our algorithm was guaranteed to have an error within 20% using 6 single-

axis accelerometers as per the 6-DOF paper that our algorithm was derived from [3].  

 
2.3.2 Data Transmission  

 In our final working design the data transmission block takes processed data being 

transferred from the microcontroller to a tablet, or other Bluetooth connected device, through a 

Bluetooth 2.0 connection. The microcontroller contained our state machine and thus handled all 

data transmission. As part of the TRANSMIT state, the microcontroller would accept a connection 

to a tablet and wait for a ping before transmitting the processed data. The baud rate was set to be 

9600 bits/s, and we attempted to use a faster rate but unfortunately the tablet could only handle a 

baud rate of 9600 bits/s as a maximum. For more detail about the state machine in general, and the 

TRANSMIT state in particular, please see section 2.3.4.2.  

 
2.3.3 Power 

Upon verifying the requirements for power, a DC supply was used to verify requirements 

1, 2, and 5. See Table 2.3.3-1 for the results. As shown, the 3V and 5V sources are within 10% of 

their respective voltage targets when a 3 V source is applied. Additionally, the UV/OV lockout 

interrupts the power supply to the rest of the circuit when the supplied voltage is within 5% of 2.7 

and 5.5V. 

 However, when verifying requirements 3 and 4 it became evident that the lithium-ion coin 

cell battery would not be able to handle the current draw of the microcontroller. When attempting 

to verify requirement 3 with a load of 6.6Ω connected to the battery, the voltage on the battery 

immediately dropped to 1.6V. Similarly, when trying to verify requirement 2 with a load of 63.2Ω 

connected to the battery, the voltage dropped to 2.65V, outside of the UV/OV voltage threshold, 

within two minutes. 

 The mistake in choice of battery arose from the misinterpretation of the stored energy 

capacity (mAh) rating of the battery. Although the battery had enough stored energy to supply the 

500mA max that our design may draw, the nature of the battery does not allow it to discharge fast 

enough to supply that current at rated voltage. Upon further investigation, it was determined that 

coin cell batteries are generally used for very low current draw applications. Upon redesign, a 

possible battery choice could be a cellphone battery. Typical cell phone lithium ion batteries are 

3.7V so it would fit within the UV/OV range. Additionally, smartphone current draw just using 

internet with the backlight at max brightness can exceed the 500mA draw, therefore a 3.7V 

lithium-ion cell phone battery would be sufficient for our application [12]. 
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Table 2.3.3-1: UV/OV Sweeping Input Voltage Results 

Input [V] 2.80 2.79 3.00 4.00 5.00 5.30 5.33 5.34 5.35 

3 V [V] 0.00 2.789 2.984 3.112 3.128 3.131 3.131 3.131 0.00 

5 V [V] 0.00 5.052 5.044 5.062 5.098 5.209 5.304 5.313 0.00 

 
2.3.4 Processing 

 The completed processing engine was approximately 12 KB in size and occupied about a 

third of the ATmega328p’s flash memory.  Since our final design did not include an incoming 

stream of live data from a RasPi, the processing engine was built around a microSD card that was 

the source for data.  However, the original plan for a state machine and algorithm as the core of 

the processing engine was completed. 

 
2.3.4.1 Processing: State Machine 

 The purpose of the state machine in our design was to handle the processing of data.  Since 

the ATmega328 had limited memory capacity, we needed to design an efficient state machine.  We 

decided to process data very systematically.  This allowed for a total of only four states.  Upon the 

PCB powering on, the state would be set to WAIT.  The PCB would remain in the WAIT state 

until a Bluetooth connection was established with a sideline device and until the connected device 

sent a “ping” to the PCB.  Once received, the PCB would enter the READ state.  Since our 

microcontroller was programmed to handle the processing of data from three accelerometers, the 

microSD card on our PCB contained three files.  Each file contained accelerometer data from its 

respective accelerometer and each line in the file described one sampled data point (x, y, and z 

values).  The READ state was designed to read in one line of data from each file.  At this point, 

the processing engine held accelerometer data for the x, y, and z directions for three different 

accelerometers.  Next, the PCB would transition into the PROCESS state.  In the process state, all 

of the accelerometer data would be sent into the algorithm so that an estimate of �⃗⃗⃗� and �⃗⃗� could be 

made.  Upon convergence, the PCB’s state would be set to TRANSMIT and it would transition.  In 

the TRANSMIT state, �⃗⃗⃗� and �⃗⃗� would be transmitted to the sideline application via 

Bluetooth.  Additionally, the heart rate data at that time instance would be sent via 

Bluetooth.  Since our PCB did not actually collect heart rate data, the PCB transmitted random 

heart rate data.  After the completion of transmission, the PCB would transition back to the READ 

state.  If there was more accelerometer data to read and therefore process, the PCB would read the 

data, transition to the PROCESS state, and then transition to the TRANSMIT state.  This would 

occur over and over until the end of the three files were reached and there was no more data to 

process.  This would result in the PCB returning to the WAIT state. 
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Figure 2.3.4.1-1: State Machine 

 
2.3.4.2 Processing: Algorithm 

 During the design phase of this project, the processing algorithm was programmed in 

Python to simulate data and the estimation of the rotational and linear acceleration of a rigid 

body.  Upon completion and consistent convergence of the algorithm, it was transferred to C 

code.  This was done because the ATmega328p required a lower-level programming language.   

 When it came time to verify how long it took to process all of our data, we measured 

multiple processes.  First, we measured how long our PCB took to read all of the data on the 

microSD card, process all of the data with the algorithm, and transmit the enriched data to the 

sideline device via Bluetooth.  This entire process took roughly 47 seconds, which was longer than 

the required 40 seconds.  40 seconds was chosen as the requirement because there are 40 seconds 

between consecutive plays in the NFL and if a player experienced a possibly-concussive hit on a 

given play, we wanted our device to show the coaches/trainers on the sideline that their player 

might be hurt.  When we didn’t meet this requirement, we decided to make a few additional 

measurements.  In Python, we measured how long it took our computer to process 50 samples of 

data for three accelerometers (same amount of data processed on the PCB).  It took a total of 19.2 

seconds in Python, which was much slower than the estimated 1.875 seconds estimated during the 

design phase for the ATmega328p.  This underestimation is most likely due to the 

microcontroller’s 8-bit architecture and significant use of 32-bit floating point numbers. The 

calculation of 1.875 seconds was based on operations such as additions, subtractions, and 

multiplications, but was not broken down into assembly language register shifts and arithmetic, 

especially not for 32-bit floating point numbers on an 8-bit architecture.  However, it was still very 

close to the 40 second requirement and a faster processor would have helped significantly.  

 In order to evaluate how the algorithm would scale with more accelerometers, the Python 

algorithm supported testing with six and nine accelerometers.  When scaled to six, the algorithm 
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converged with less than half of the iterations it took for three accelerometers.  More importantly, 

the algorithm processed 50 data samples in 14.9 seconds, which was faster than 19.2 seconds for 

three accelerometers.  When scaled to nine accelerometers, the algorithm again took less iterations 

to converge, but processing time went up to 32.35 seconds. 

 Overall, we learned that six tri-axis accelerometers would be the ideal implementation for 

our design since it processed data the fastest. Additionally, research suggested that six single-axis 

accelerometers be used for sufficient accuracy.  Although we were not able to test our results for 

accuracy against our test data, we know that from research our six tri-axis accelerometers would 

result in sufficient accuracy and processing speed. 

 
2.3.5 Wearability/Size 

 As seen in Figure 2.4.3-1, the device PCB fits within the specified margins. However, as it 

was discovered too far into the semester to redesign, the microSD needs a logic converting IC to 

convert the 3V logic used with the microSD to the 5V logic used with the microcontroller. That is 

why a breakout board is soldered onto the microSD spot and hanging off of the PCB. A further 

iteration of the design would have both the microSD slot and the logic converting IC soldered on 

the PCB within the size constraints. 

In terms of scalability, if more accelerometers are needed for more accurate data, then more 

data will need to be processed. If more data needs to be processed, then to do it in a similar time 

frame a faster processor would need to be used. With a faster processor comes a larger power 

consumption and possibly different supply voltages. With a larger power consumption, comes 

more robust voltage regulators capable of handling the higher current, as well as a battery with a 

higher stored charge capability. Ultimately, for the purpose of our initial prototype, the device fits 

within 101 x 42 x 20 mm in order to adhere to being as small as possible while accounting for all 

the hardware. However, for production purposes, the device would be able to be made smaller 

with the help of a pick and place machine and design for production. Finally, if upscaling in the 

number of accelerometers is necessary, it is likely there would need to be an upgrade in hardware 

which in turn would be an increase in size as well. See Table 3.3-1 for an estimation of how power 

scales with the number of accelerometers. 

 

2.4 Cost Analysis 

The labor cost of development of this project is predicted to be proportional to $30/hour 

for each member of the team over a period of 14 weeks. Thus the total cost of labor for the whole 

team is estimated to be: 

 

3 * $30/hour * 20 hours/week * 14 weeks = $ 25,200 (6) 
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Table 2.4-1 Cost of Parts. 

 

Part Vendor Quantity Cost (Individual) 

3 V Li-Ion Battery Mouser 1 $9.28 

Battery Holder (36-301-ND) Digikey 1 $1.79 

Microcontroller (ATmega32) Microchip 1 $1.83 

PCB’s  PCBWay 1 $10 

Various passive components  Mouser 16 $2.14 (total for 16) 

Power Inductor (DO1608C-103MLB) Mouser 1 $1.59 

Sandisk 8GB microSD Amazon 1 $5.49 

microSD Slot 

(472192001) 

Avnet 1 $0.98 

PTC Fuse 

(MF-FSMF035X) 

Mouser 1 $0.42 

Switch (CL-SA-12C-02) Digikey 1 $2.52 

UV/OV (LTC4365CTS8#TRMPBF) Arrow 1 $2.13 

Accelerometer  

(ADXL375BCCZ ) 

Analog Devices 3 $7.92 

HC-06 Serial Bluetooth Module Amazon 1 $9.99 

5 V Boost (MAX1724EZK50+T) Mouser 1 $3.67 

3 V LDO (TPS79530DCQR) Digikey 1 $2.70 

28 PDIP Socket (1-2199298-9) Mouser 1 $0.71 

4-Pin Header (22-03-2041) Mouser 1 $0.30 

16 MHz Crystal (ECS-160-20-4X) Mouser 1 $0.69 

Dual Mosfet (IRF7910TRPBF) Mouser 1 $1.23 

Total  N/A 37 $114.63 

 

We only plan on building one fully functional device by the end of the semester so the total 

development cost is predicted to be $25,314.63. This price may increase if replacement parts are 

required and so this price should be taken as a lower bound. 
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3 Conclusions 

3.1 Ethics 

 Since our device is primarily a data logger/processor we do not foresee any major ethical 

concerns. As far as our data processing is concerned, we are not going to make any inferences or 

claims based on our data. Rather we are simply collecting and transmitting useful data that can be 

provided to other individuals or organizations to utilize in their research. Any claims or 

conclusions that are made based off of our data is not our ethical responsibility. We will go so far 

as to assure that the shared data has not been altered or tampered with in any way to support any 

particular study or conclusion. Additionally, since the data we are collecting is health information 

of athletes we can fall under the protection of HIPPA [2]. Under HIPPA (Health Insurance 

Portability and Accountability Act of 1996) the healthcare information of an individual, such as 

heart rate, is protected by federal law. An individual can choose to share their healthcare 

information with apps and companies such as ours and this ensures the protection of our data as 

well as the privacy of the athletes.  

3.2 Safety 

 The only real piece of our design that could potentially harm someone is the lithium ion 

battery. A relatively small explosion or a small fire can be caused by sudden capacity loss from 

thermal runaway which could be caused by a short across the battery. Depending on how close an 

individual is to our device if such a failure was to occur, there could be some minor injuries. To 

mitigate the risk of such an event and ensure the safety of our users we will include a PTC fuse to 

disconnect the hardware from the power source in the case of a short. This will also have the added 

benefit of protecting the rest of the circuit from damage. Another instance where the battery could 

explode or catch fire would be if a collision physically damaged the battery. This would be 

protected against by a mechanical housing. Also, since we are providing a detailed description of 

our inputs and outputs, all potential risks associated with our device are clearly defined. This 

minimizes any major risk of injury due to ignorance.  

3.3 Further Design Considerations  

 For further iterations of this design, as mentioned above, the microSD connector and 

logic converting IC would be soldered on the board. Additionally, a different battery, possibly 

smart phone lithium-ion or other architecture battery, would be used to meet our current 

consumption needs. Furthermore, three traces had to be cut and three jumper wires had to be 

soldered due to a pin labeling error in the schematic. This, of course, would also be addressed in 

a following iteration. Also, as mentioned above, when a final design is completed it would be 

scaled down using smaller passive components and closer placement since a pick-and-place 

machine would be used as compared to hand soldering. 

 As to scaling the device to include more accelerometers, more power, faster processing, 

and a larger size would also be needed to maintain a consistent run-time. See Table 3.3-1 for a 

rough estimation of how power, processing speed, and size all scale with the number of 

accelerometers. The max power consumption was looked up for a processor of that speed, added 

to the power consumption of the rest of the ICs on the PCB, and added to the power consumption 

of the accelerometers. The processor speed was scaled linearly since the amount of data would 

increase linearly. The size was determined by accounting for the additional size of the faster 

processor on the PCB and the additional size of more accelerometers.  The speed of the 



 18 

T
e

a
m

 4
9

-H
e

a
d

 T
ra

u
m

a
 D

a
ta

 T
ra

n
s
m

is
s
io

n
 a

n
d

 L
o

g
g
in

g
 |

  
5

/
3

/
2

0
1

7
 

algorithm was computed from simulations in Python. Memory storage was calculated based on 

the upper limit of data that would be collected for one player during one football game.  

 

Table 3.3-1: Power, Speed, and Size Scaling with Increasing Accelerometers 

 

# of 

Accelerometers 

Power 

[W] 

Processing 

Speed [MHz] 

PCB Size 

[cm^3] 

Algorithm 

Speed to find �⃗⃗⃗� 

and �⃗⃗⃗� [ms] 

Memory 

Storage [MB 

per player per 

game] 

3 1.401125 16 84.8445 19.2 0.2304 

6 1.50225 32 88.449 14.9 0.45 

9 1.523375 48 92.2035 32.35 0.66 

3.4 Take-Away 

 Overall, this project has been a huge learning experience. Before taking this class none of 

us had ever participated in brainstorming an idea, formulating a design, and bringing that design 

to reality. Through this process we have learned quite a bit about what it takes to create a 

wearable device. For instance, we learned that size consideration is an ever present concern that 

impacts nearly all other aspects of our design. In terms of our project, size was an issue because 

it limited how powerful a microcontroller we could use. To take it to an extreme, the most 

processing power we could get would be from a computer. However, it is obviously unfeasible to 

ask people to lug around a computer to use our “wearable” device. So instantly, we have to 

sacrifice a lot of processing power for the sake of making our device comfortable for a person to 

wear. Additionally, the size constraints impact power in a similar fashion. This time, the issue is 

that a small microcontroller can still require a fair bit of power to function and that power can 

only be supplied by a large battery. Once again if taken to the extreme, it could be that we have a 

compact and powerful microcontroller that fits the design criteria but the power it requires can 

only be supplied by a large battery that violates our size constraint. So again, size limits the 

microcontroller that is viable for our design. The process of determining all these different 

constraints and working within them was an initial challenge that we did not foresee and it was 

something that impacted the remainder of our project. Thus, we realize now the importance of 

this beginning stage of design and the proper parameters that need to be considered at this stage.  

Another important take-away for us is the ability to quickly pick up new technologies and 

the ability to modify the design in light of new information. Going into this project, none of us 

had any prior experience working with Bluetooth and so we had to work fast in order to learn 

enough about it in order to utilize it in our project. Part of what we learned forced us to do a 

major redesign in the form of dropping a design component completely, i.e. the RasPi. Having to 

knock out the RasPi then required us to quickly think up of a new way to generate test data, 

which we did by way of Unity, Matlab, and Simulink. Frankly, we could have saved ourselves 

some hassle if we had worked faster on learning and implementing Bluetooth. Accordingly, the 

lesson here was to quickly learn about any new technology that we are relying on and to be 

prepared for a redesign due to new information.        
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All in all this project has been a tremendous learning experience. We have learned quite a 

bit about various aspects of design as well as general skills and good practices, i.e. quickly 

learning new technologies, making progress on all fronts, and seeking expert advice to name a 

few. Although it may have been difficult at times, this project has helped give us valuable insight 

into the design of wearable devices and the trade offs that exist between size, power, and 

processing speed. Although we may not have been able to complete the project exactly as we 

initially envisioned it, we are proud of the progress that we made and of our final device as it 

exists. We firmly believe that another iteration of this design could meet all of our requirements 

and be a practical wearable device that can aid concussion research for years to come. 

4 Supporting Material  

4.1 Design Schematic and Layout  

 

 
Figure 4.1-1 Power Circuit Schematic 
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Figure 4.1-2 Microcontroller, Bluetooth Module, and microSD 

 

 
Figure 4.1-3 PCB Layout 
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4.2 Test Data Generation Block  

 
Figure 4.2-1 The simulink block diagram of an accelerometer. 

 

4.3 Device 

 
Figure 4.3-1: Finished Device 
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