American Sign Language Alphabet Interpreter

Team 3

Nicholas DeNardo, Michael Genovese, Timothy Wong TA: Jacob Bryan

Introduction

- 500,000 to 2,000,000 North Americans rely on American Sign Language (ASL) to communicate.
- Less than 1% of the larger hearing community can interpret ASL [2].

Objectives

- Develop a device that audibly translates the ASL alphabet into the English alphabet.
- Goals
 - 95% classification correctness
 - 4 hours of battery life
 - Wearability

Block Diagram

ECE ILLINOIS

Flex Sensors Operating Principle

ECE ILLINOIS

LLINOIS

Flex Sensors Circuit

ECE ILLINOIS

IILLINOIS

Flex Sensor Construction

Flex Sensor Performance

ECE ILLINOIS

Flex Sensors Comparison

Commercial Flex Sensors

- Slow Response
- Limited Resistance Range
- As Is

ECE ILLINOIS

Optical Flex Sensors

- Fast Response
- Large Resistance Range
- Tunability

Settling Time

Contact Sensors

Accelerometer

ILLINOIS

Contact Sensors

Low-to-High Debouncing

13

with V

ECE ILLINOIS

with U or R

[6]

R **No Observed Confusion**

Accelerometers Module

Interrupt to MCU Frame Sync from MCU Serial Clock from MCU Serial Data to and from MCU

ECE ILLINOIS

ILLINOIS

Speaker Module

The speakjet was used as a low power solution to producing audible speech.

LLINOIS

Speaker Module Circuit

Power Module

The power converters needed to be efficient for a full day's use

- 3.3 V and 5 V buck converters were used
- 9V alkaline battery pack for convenience and safety
- 0.385W inactive power draw
- 2.385W active power draw

Microcontroller

Used LPC11U37 microcontroller

- Low power solution
- 40 GPIO pins
- Supports I²C, SPI, and UART
- Small

Problems:

- Low memory
- Opted for Raspberry pi for demo

Microcontroller Circuit

ECE ILLINOIS

ILLINOIS

Letter Classification

Data Collection

Preprocessing

Classification

- Flex sensor, accelerometer and continuity data
- 35,000 labeled examples

- Standardize all input data
- Linear discriminant analysis (LDA)
- Support vector machine (SVM)
- 26 letters and 'off' state

Linear Discriminant Analysis

Before Transformation

ILLINOIS

Linear Discriminant Analysis

After Transformation

ILLINOIS

Support Vector Machine

Classification Accuracy - 98.7%

	а	100	Ó	Ó	Ó	Ó	Ó	Ó	Ó	Ó	Ó	Ó	ò	Ó	Ó	Ó	Ó	Ó	ο c	0.053	Ó	Ó	Ó	Ó	0	Ó	Ó	0
e label	b	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.11	0	0	0	0
	c	0	0	99.0	0	0.74	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	d	0	0	0	98.0	0	0	0	0	0	0	0	1.7	0	0	0	0	0	0	0	0	0	0	0.11	0.11	0	0	0 _
	e	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	f	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	g	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	h	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	i	0.072	0	0	0	0	0	0	0	99.0	0	0	0	0	0	0.072	0	0	0	0	0.43	0	0	0	0	0.072	0	0 _
	j	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	k	0	0	0	0	0	0	0	0	0	0	98.0	0	0	0	0	1.4	0	0.069	0	0	0.14	0	0	0	0	0	0
	I	0	0	0	0.54	0	0	0	0	0	0	0	99.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0_
	m	0	0	0	0	0	0	0	0	0	0	0	0	100	0.11	0	0	0	0	0	0	0	0	0	0	0	0	0
	n	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0
True	0	0	0	0.11	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0
	р	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0.22	0
	q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	98.0	0	0	0	0	0	0	0	0	0	2.3
	r	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0
	s	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0 _
	t	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0
	u	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	97.0	3.1	0	0	0	0	0
	v	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	99.0	1.4	0	0	0	0
	w	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0
	x	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0 _
	y	0.076	0	0	0	0.076	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0
	z	0	0	0.11	0	0	0	0	0	0	0	0	0	0	0	0	1.8 (0.057	0	0	0	0	0	0.057	0	0	98.0	0 _
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.88	0	0	0	0	0	0	0	0	0	99.0
	L	ð	\$	Ċ	6	e	¢	9	~	1	``	4	`	К.	<u>^</u>	0	\$	0	<	5	Ľ	\$	1	h	+	4	1	
													Р	real	ted	lape												

ECE ILLINOIS

ILLINOIS

U vs V, Z vs P, Q vs 'off'

ECE ILLINOIS

Final Remarks

- Outcomes
 - Greater than 95% accuracy
 - Requires MCU with larger memory space
 - Not wearable
- Future Work
 - Gather larger dataset to make glove compatible with more users
 - Shrink form factor

References

- [1] Signing Into The World of American Sign Language [Online]. (2017). Available: signlanguagemaster.com. Accessed: April 26, 2017.
- [2] Lane, Hoffmeister, and Bahan. A journey into the deaf-world. San Diego, CA.: DawnSignPress, 1996.
- [3] *Support Vector Machine*. [Online]. (2017). Available: diggdata.in. Accessed: April 26, 2017.
- [4] Flex Sensor 4.5". Sparkfun. [Online] Available: https://www.sparkfun.com/products/8606. Accessed: April 26, 2017.
- [5] Optical Data Communication. All About Circuits. [Online] Avaliable:https://www.allaboutcircuits.com/textbook/digital/ch pt-14/optical-data-communication/

References (continued)

 [6] The Fingerspelled Alphabet. lifeprint. [Online] Available: <u>http://www.lifeprint.com/asl101/pages-layout/fingerspelling.ht</u> <u>ml</u>. Accessed: May 1, 2017.

Video

High-to-Low Debouncing

ILLINOIS