
AUTOMATED BARTENDER

DESIGN DOCUMENT

March 10, 2017

Greg Wajda, Max Dribinsky, Austin Gram

UIUC

ECE 445

Contents

Introduction . 2

Objective . 2

Background . 2

High Level Requirements . 3

Commercial Product Vision . 4

Design . 6

Block Diagram . 6

Physical Design . 11

Functional Overview . 13

Requirements/Verification . 16

Supporting Material . 18

Tolerance Analysis . 19

Cost . 21

Schedule . 22

Ethics and Safety . 23

Bibliography . 25

1

UIUC gjwajda2, dribins2, gram2

INTRODUCTION

Objective

The first image that comes to mind when imagining a crowded bar is a scene of blood, sweat,

and tears. Fighting to attract the attention of the overwhelmed bartender, surrounded by

sweating bodies and overwhelmed with a pounding bass. We began our project with a goal to

optimize that process, to make ordering a drink akin to purchasing an item on Amazon with

two-day shipping, with similar guarantees of quality and safety upon delivery.

Taking matters into our own hands, we brainstormed how we could improve the security of

the exchange that takes place at a bar when ordering a beverage. Essentially, the process of

ordering a drink can be broken down into the following steps:

1. Customer attracts the attention of the bartender

2. Bartender begins preparing the order while customer continues socializing. Note that

this step requires complete trust in both the attention and good intentions of the

bartender and those around him/her.

3. Drinks are ready. The customer pays the bartender and leaves with the drinks.

In that process, we noticed that the second step provides much more vulnerability than

necessary. Our project seeks to resolve and mitigate those vulnerabilities so that the process

is streamlined and secure. As the title of our project implies, on a high level, we are designing

a machine which can operate in place of a bartender. The machine will have the ability to

pour a mixed beverage in any proportion, combining two separate drinks to the user’s liking.

However, by protecting the beverage until the moment it is prepared and the customer has

authenticated themselves, the user can maintain full confidence that the drink is safe and

delicious. Our goal is for this machine to be more efficient, safe, and reliable than a traditional

human bartender would be. We seek to accomplish this with a heavy emphasis on security

and it is our hope that in doing so, we will further aid the movement and societal shift to

prevent sexual assault.

Background

After conducting some research, we saw that the problem of automating the bartender has

been solved before. It was already an item on the market that users were purchasing and

Page 2 of 25

UIUC gjwajda2, dribins2, gram2

loving. However, there was only one thing missing, which turned out to be the most important

part: security.

What began as a concept to improve the ordering process at a bar has transformed into

an idea which aims to protect campuses and bars across the world. We focus heavily on

security to prevent anyone who is not permitted to interact with the drink as it is being

prepared.From our observations and experiences on this campus, alcohol is an enormous

part of life for a significant percentage of the student population. With the current standards

in place at bars on campus, the threat of a predator slipping an unwanted addition into some-

one’s drink it too large to be ignored, and the inconvenience of ordering drinks is significant

enough to take away from the enjoyment of bargoers.

High Level Requirements

1. Security: Drink should not be accessible to any customer until the drink is fully pre-

pared, and the customer who placed the order has authenticated him or herself.

2. Efficiency: Drink should be prepared and awaiting the user’s authentication in 20

seconds or less from the moment it is ordered.

3. User-friendliness: User interface on mobile application delivers a straightforward and

pleasant experience to the user, allowing him or her to order a beverage to their desired

proportion.

Our implementation focuses directly on designing a machine which fulfills these three re-

quirements. For the security, the beverage is only accessible to the outside world immediately

after the user has authenticated, until the moment the door shuts. If a user authenticates

but does not claim their drink within a few seconds, the drink is dumped. This may be an

inconvenience to users if they are ready to pick up their order. However, we are confident

that there exists a timing solution which will preserve the safety and security of the drink

without making the experience frustrating for the user.

As far as efficiency, our second requirement, our program loops endlessly and never stops

working. Although in the first version it will only be able to service one request at a time and

will not have any sort of request queue, we feel that in a later version, this aspect would be

straightforward to implement with threading and multiprocessing. More machines could also

be added which could divide up the labor. There would be some sort of routing protocol to

Page 3 of 25

UIUC gjwajda2, dribins2, gram2

forward the requests to the individual machines from some central server. Currently, however,

this machine will be designed to serve one request at a time, which should be approximately

as fast as an average human bartender.

Finally, our third requirement requires a flawless design of our mobile application. We

will deliver a user-friendly and intuitive experience by offering the user several options. They

will have a few choices between suggested beverage proportions, or have the option to cus-

tomize their beverage, and choose any proportion they’d like. In a later version of the project

there would be more options of beverages, and the mobile application would provide more

combinations and mixes, as well as more customization if a user wanted to create their own

mixture.

Commercial Product Vision

Currently, bars aren’t scalable. The more people in your bar, the harder it is to supply the

demand, and the harder it is to account for the safety of everyone. In commercial use of our

product, we would expand the drink choices available by increasing the size of the conveyor

belt and amount of drinks. We would create multiple pick-up areas that are still protected

from outside factors to allow for multiple orders to occur in parallel. Customers would be

able to purchase drinks using their app and wait to be notified that their drinks are ready.

This step allows bars to scale because people will waste less time trying to get drinks and in

turn have more time to enjoy with their friends, making them less likely to leave when the bar

gets too crowded. It also increases safety because less people are standing together pushing

against each other to get closer to the bar, and instead spread out naturally.

In addition, and what we find separates our project from most other automated bartender

project, is our focus on safety. The drinks will never be exposed to the outside until the user is

verified. In practice, this would be implemented at scale by scanners in every pick-up area

mentioned above. In college bars, bartenders frequently line up eight drinks on the bar and

pour them. Then they slide each one over individually, exposing them to every single person

sitting at the bar. After that, the person who just bought the drinks hands them back to their

friends, who are usually reaching over/around a crowd of people surrounding the bar. This

method is extremely risky compared to simply going to a pick up point when notified.

We believe that our design can easily be scaled to commercial use. Whoever uses our design

Page 4 of 25

UIUC gjwajda2, dribins2, gram2

will also be able to scale their business, drastically increasing safety of the bar patrons along

the way.

Page 5 of 25

UIUC gjwajda2, dribins2, gram2

DESIGN

Block Diagram

Figure 1: Block Diagram

Modules

Micro-processor: ATmega328

Input 3 Bytes from WiFi Module, 128 Bytes from scanner, 5V±5% or 0 from sensor and door circuit

Output Digital signals to various modules, see block diagram above.

The ATmega328 houses the control logic of the entirety of our project, outside of the user

interface to obtain drink orders from the users. It has pins that allows for multiple protocols

such as SPI, I 2C , USART, and PWM, which we used to formulate our requirements for the

rest of our components.

Page 6 of 25

UIUC gjwajda2, dribins2, gram2

WiFi Module: Adafruit ATWINC1500 WiFi

Input 3 bytes (drink order) from Android Application via TCP

Output 3 bytes (drink order) to ATmega via SPI

In industry, we would want our users to be able to order a drink from anywhere in the bar.

To accomplish this, we decided to go with WiFi for communication between the Android

app and the ATmega328. This module uses SPI as its protocol, which meets our requirement

because the ATmega can interact over SPI.

Barcode Scanner: Unitech AS10-P AS10

Input Barcode data (128 bytes) from Android Application

Output Barcode data (128 bytes) to ATmega via SPI

Our project verifies the user’s identity by utilizing a barcode scanner. By mounting it above

the drink dispensing area, the user will be able to scan the barcode they receive from their

app and grab their drink after the door is unlocked. As mentioned in the output, the barcode

scanner outputs 128 bytes over SPI, which meets our requirement because the ATmega can

interface with SPI.

UHPPOTE Magnetic Lock

Input 12V±5% to lock, 0V to unlock

Output No Output

This magnetic lock will allow us to control user access of the door without adding mechanical

components, saving us time while doing just as good of a job as any other lock. The only logic

this module requires is whether the lock needs to be on or off. This can be handled by our

ATmega328 by utilizing one of its GPIO pins along with a transistor to control a 12V line to

one of the lock’s terminals, with the other one attached to ground (see figure 7 on page 15).

Brass Liquid Solenoid Valve - 12V - 1/2 NPS

Input +6-12V to open, 0V to close

Output No Output

Page 7 of 25

UIUC gjwajda2, dribins2, gram2

We will be using this valve for the dispensing of both of our drinks. It has two terminals which

cause the valve to open when a voltage difference of 12V is applied, letting the liquid through.

It doesn’t have a gasket, so there is no minimum pressure required. This was necessary to

meet our requirement because we do not pressurize the liquids in our project. It can still

function down to 6V but it is slower to open. This can be handled by our ATmega328 by

utilizing one of its GPIO pins along with a power transistor to control a 12V line to the valve,

as well as a kickback diode to prevent damaging any parts (see figure 7 on page 15). A power

transistor is necessary to handle the high current that this component pulls (3A @ 12V).

Infrared Proximity Sensor: Sharp GP2A200LCS0F

Input +5V±5%

Output 5V±5% without sensing, 0V when sensing something

This proximity sensor has a very short range (2mm - 22mm). It is exactly what we need to

ensure that the cup is in the correct location for the pouring of beverages. This module has 3

pins: Vcc, Vout, and GND. Vout will be attached to a GPIO pin on the ATmega328. When Vout

goes low to 0V, we know that there is a cup in place and to stop the conveyor belt.

Android Application

Input User drink input via UI

Output 3 bytes (drink order) to WiFi Module via TCP

Our android application has a simple UI that allows the user to order a combination of two

drinks with different ratios. It communicates over the local WiFi network to send data in the

form of 3 bytes to the WiFi module. The WiFi module then relays it to the ATmega328.

12V 7A Power Supply

Input 120VAC @ 60Hz from wall socket

Output 12VDC with 7A max (84W)

Our power supply will need to supply 12VDC at 7 Amps. We will use a voltage regulator to

provide a 5VDC line as well. See our calculation in the Supporting Material section to see how

Page 8 of 25

UIUC gjwajda2, dribins2, gram2

we came up with the power requirements.

Door

Input No input

Output +5V±0.25 when door is closed via completed circuit

The door will have a latch that will allow it to open and close. It will have the magnetic lock

attached to it. It will complete a circuit when closed and will be an open circuit when open

(Figure 7 top left). This circuit will be attached to a GPIO pin on the ATmega328 to notify

when the door is open.

Conveyor Belt Module - Motor and Driver

Stepper Motor

Input 12V differential controlled by driver.

Output Movement of conveyor belt

Bipolar Stepper Motor Driver - A3967SLBTR-T

Input 5V logic, 12V load, PWM from ATmega

Output Stepping control to motor via motor’s 4-wire cable

Our stepper motor and driver allow us to control the conveyor belt using the ATmega. By

hooking up our driver to the ATmega’s PWM pin, we can vary the speed of the conveyor belt

to accelerate and decelerate the cups into the correct position in front of the door without

them falling over. The driver circuit will utilize the A3967SLBTR-T chip in an adaptation of

Sparkfun’s EasyDriver - Stepper Motor Driver circuit (Figure 2) by eliminating unnecessary

components such as the step down from 12V to 5V because we already have a voltage regula-

tor, or the handling of 6 & 8 wire stepper motors.

Page 9 of 25

UIUC gjwajda2, dribins2, gram2

Figure 2: EasyDriver - Stepper Motor Driver schematic from Sparkfun

Page 10 of 25

UIUC gjwajda2, dribins2, gram2

Physical Design

Figure 3: Back View

Figure 4: Front and Side View

While somewhat cartoony, these figures get the general idea across of the physical design of

our project. This design abstracts the power supply away to make it more clear. See our block

Page 11 of 25

UIUC gjwajda2, dribins2, gram2

diagram (Figure 1) for how power is handled.

Our project is only concerned with the dispensing of drinks and authentication of the user.

In Figure 3, the back view can be seen, where we utilize a conveyor belt driven by a motor

to transport the cup. The cup will eventually be detected by the sensor in the pouring area,

indicating that it is in the correct spot and ready. The drinks will then pour. The view that

the user sees when picking up the drink is on the left side of Figure 4, or the front view. The

user can see very little of the inner workings of our project besides the things immediately

surrounding the door.

All communication with the user is done via the Mobile Application’s interaction with the

ATmega microprocessor with the WiFi module as the middle man.

We assume, for the purpose of a 1 semester project, that empty cups will always be loaded

on the conveyor belt, and the user will always take the cup. In industry, we would ideally

have the cups being put onto this belt after being washed or prepared in some way. If the

drink is not claimed by the customer, the drink will be moved off to the left (of Figure 3) to

the disposal for unused drinks, which is also abstracted away for us. Our design would be

able to scale for industry by increasing the size of the conveyor belt, allowing for more drinks,

valves, and drink pouring locations marked by sensors.

Page 12 of 25

UIUC gjwajda2, dribins2, gram2

Functional Overview

Figure 5: Program flowchart

Page 13 of 25

UIUC gjwajda2, dribins2, gram2

Our program flowchart above maps our program’s execution from listening for a request from

the mobile application, through each step of the pouring process, to the moment of delivery.

Before an order is made, there will be a listener program running on the ATmega, which

interfaces with the WiFi module using the SPI protocol and listens for a request being made

from a mobile device on the same network. Once a connection is established, we are able

to communicate with the client directly and securely. The program flow leads through the

procedure of pouring a beverage and generating a barcode. It sends this barcode to the user

via TCP, and begins scanning for barcodes in the near vicinity. The security requirement is

satisfied through our authentication procedure.

While the majority of the security and protection comes from the physical barrier that sepa-

rates the user from the drink as it is being prepared, the core functionality stems from the

protocol interfaces between the micro-controller (ATmega328), and the various modules.

This microprocessor is extremely versatile in that it natively offers SPI, I 2C , USART, as well

as several analog and digital GPIO pins from which we can read, and to which we can write

values. The ATmega328 is the processor used in many Arduino applications, which allows

programming and developing with it to be straightforward and well-documented. We intend

to set it up primitively as a breakout board with the schematic as shown below.

Figure 6: ATmega328 basic schematic [1]

Page 14 of 25

UIUC gjwajda2, dribins2, gram2

With such a flexible layout, we will be able to add and remove our modules very easily,

allowing for extremely modular and streamlined testing and development. All modular com-

ponents can be represented as black boxes with their corresponding inputs and outputs

attached to the correct protocols of the ATmega. A PCB will be made for the sensors, with

leads for connections to the other modules.

Beyond the layout, the microprocessor will utilize GPIO pins to control the pouring valves, as

well as the electronic devices including the lock and open-door sensor as shown in Figure 7.

These signals are easy to manipulate and read. The door circuit will have a pull-down resistor

so that when the circuit is open, the GPIO pin reading will see 0V, and when the door closes,

the circuit is complete and it will read 5V.

For communication with the scanner and WiFi module, we will be implementing the SPI

protocol, transferring serial data to and from the microprocessor. We only have to read from

or write to one module at a time, so after spending some time evaluating our options and

seeing what was available, we decided SPI was the most efficient choice for our purposes. The

USB protocol would have been easier to find scanner devices for, but after looking at some re-

search, it seems that the microcontroller cannot act as a USB master, making it unnecessarily

complicated to create a workaround library considering our limited time frame.

Figure 7: Circuit design for electromechanical controller

Page 15 of 25

UIUC gjwajda2, dribins2, gram2

Requirements/Verification

Micro-processor: ATmega328

Requirement Verification

Must be able to run at 5V ±10% Using voltage generator, we will run simple

programs at 4.5V and 5.5V and evaluate the

performance.

Must be able to provide a timer interface to

the programmer, and time events up to 120

seconds.

Write a function which will light up an LED at

a certain sequence of time steps and compare

it against a stopwatch.

Must be able to generate 128 random bytes and

send them to the mobile device in less than .5

seconds

Display generated barcode on mobile device,

and compare with hardcoded "random" bytes

on ATmega.

Must be able to compare two 128-byte strings

to determine if they are equal in less than .5

seconds

Hardcode several strings for the ATmega to

compare, and display the results on an LED

(1 if same, 0 if different), and compare timing

against a stopwatch.

WiFi Module: Adafruit ATWINC1500 WiFi

Requirement Verification

Must be able to send 128 bytes of barcode data

in under 1 second.

Create socket connection on ATmega to send

packets of data.

Send 128 bytes of bytes from ATmega to Phone.

Will send bytes over connection and then print

bytes on screen to confirm.

Must be able to receive 3 bytes of user/drink

data in under 1 second.

Create socket connection on app to send pack-

ets of data.

Send 128 bytes from Phone to ATmega. Will

send bytes over connection and then print

bytes on screen to confirm.

Page 16 of 25

UIUC gjwajda2, dribins2, gram2

Barcode Scanner: Unitech AS10-P AS10

Requirement Verification

Scan code correctly 95% of the time or more. Using a set barcode, scan hundreds of times.

Store correct scan value on ATmega. Light up

an LED for matching stored and scan value to

obtain data points. Calculate percentage using

these data points until we reach confidence in

the requirement being met.

12V Power Supply from Kit

Requirement Verification

Must be able to provide 12V±.25 to our 12V

modules.

Use multimeter to test voltage from power

supply.

Must be able to be regulated to provide 5V±.25

to our 5V modules.

Use multimeter to test voltage from power

supply.

Must be able to provide at least 1A current. Use multimeter to test current.

UHPPOTE UT0511-130NO Magnetic Lock

Requirement Verification

Must be able to handle 100lbs of force pulling

against the lock.

Fasten both lock components and lock by ap-

plying 12V differential. Clamp the mobile com-

ponent, pull with a spring scale. Our design

will not allow enough grip for humans to pro-

vide that kind of pulling force.

Must only have 2lbs or less of resistance when

unlocked.

Fasten both lock components. Unlock by ap-

plying 0V. Pull with spring scale.

Brass Liquid Solenoid Valve - 12V -1/2 NPS

Requirement Verification

Must be able to dispense liquid using only grav-

ity (no pressure necessary) at a rate of at least

1.2 ounces per second for a total of 10 seconds

Hold container of liquid upside down with

valve attached. Apply 12V differential to the

terminals and observe results.

Page 17 of 25

UIUC gjwajda2, dribins2, gram2

Infrared Proximity Sensor: Sharp GP2A200LCS0F

Requirement Verification

Must emit digital signal when an opaque cup

is at a distance of 2cm or less.

Wire up sensor. Hold opaque cup at distance

2cm or closer and measure output.

Must emit digital signal when a glass cup at a

distance of 2cm or less.

Wire up sensor. Hold glass cup at distance 2cm

or closer and measure output.

Android Application

Requirement Verification

Allow users to select or create drinks with a cus-

tom proportion between two mixtures (any ra-

tio from 100%:0% to 0%:100% with increments

of 10%).

Create user interface that allows such options.

Test functionality works as intended.

Must be able to receive 128 bytes of barcode

data in under 1 second.

Create socket connection on ATmega to send

packets of data.

Test sending data from ATmega to Phone.

Must be able to send 3 bytes of user/drink data

in under 1 second.

Create socket connection on app to send pack-

ets of data.

Test sending data from Phone to ATmega.

Must be able to execute on Android Phone run-

ning Lollipop.

Test app launch on Phone or emulator with

Lollipop.

Must be able to display barcode data on screen

to be read by barcode scanner.

Test receiving and display of barcode data.

Door Circuit

Requirement Verification

Must change digital value when door is open

or closed within .25 seconds

Set up ATmega to read from circuit pin and

open and close the door quickly, displaying

readings through LED output

Supporting Material

Conveyor belt motor RPM calculation:

2’ long conveyor belt

1" diameter motor

Page 18 of 25

UIUC gjwajda2, dribins2, gram2

Distance per rotation of motor = circumference = πD =π inches

Desired time to travel 2’: 10 seconds

Desired velocity = di st
t i me = 2′

10s = 24"
10s = 144 i nches

mi n

Desired RPM = 144 i nches
mi n ∗ 1 r ot ati on

π i nches = 45.8 rpm

Pouring speed calculation:

Total time requirement: 20 seconds

Conveyor belt time worst case: 10 seconds

Drink size: 12oz

Desired pouring rate: amount
ti me = 12

10 = 1.2 ounces per second

Power Requirements

Part Voltage Rated Current

Valve 12V 3A

Valve 12V 3A

Stepper Motor 12V 0.33A

Lock 12V 0.10A

Voltage Regulator 5V 1A Max

P = IV

Worst Case Power = I1V1 + I2V2, we assume maximum current across regulator.

= 12V · (3+3+0.33+0.1)A+5V ·1A = 82.16W

Power supply is 12V, so we need it to handle 82.16W
12V = 6.847A

Tolerance Analysis

The ATmega328 chip is able to operate at voltages between 1.8-5.5V[2], with an absolute

maximum rating of 6.0V. We will provide this voltage to the ATmega, as well as the other

modules on the 5V line (WiFi module, proximity sensor, and barcode scanner) by utilizing

the LM7805 voltage regulator device, which can convert 12V to 5V. It has an output voltage

tolerance of ±4%[4], which in our case equates to 4%∗5V = .20V . Since the ATmega328 chip

Page 19 of 25

UIUC gjwajda2, dribins2, gram2

is able to function normally anywhere between 1.8-5.5V, and our regulator will provide us

anywhere between 4.8-5.2V, we should be well within our limits in operation.

Page 20 of 25

UIUC gjwajda2, dribins2, gram2

COST

Labor

Name Hourly Rate Hours Invested Total ($)

Austin $30.00 200 6,000

Greg $30.00 200 6,000

Max $30.00 200 6,000

Total 600 18,000

Parts

Description Source Part Number Quantity Cost ($) Total ($)

ATmega328 Sparkfun ATmega328 1 6.00 6.00

WiFi Module Adafruit Adafruit ATWINC1500 1 25.00 25.00

Barcode Scanner Amazon Unitech AS10-P 1 30.00 30.00

Lock Amazon UHPPOTE UT0511-130NO 1 23.00 23.00

Brass Liquid Solenoid Valve Adafruit Adafruit Product ID: 996 1 24.95 24.95

Infrared Proximity Sensor Digikey GP2A200LCS0F 1 7.11 7.11

Wood for creating casing (if machine shop can’t make) Menards 3/4” x 8” x 8’ 3 23.98 71.94

Motor Machine Shop Miscellaneous 1 N/A yet N/A yet

Circuit miscellany ECEB? N/A Depends 0.00-30.00 0.00-30.00

Table Total

Labor $18,000

Parts $188.00-$218.00

Total ∼$18,203

Page 21 of 25

UIUC gjwajda2, dribins2, gram2

SCHEDULE

Week Task Duty

Feb. 27th Finalize purchases All

Mar. 6th Program blink LED program onto ATmega328 successfully Max

Complete testing of all parts in our possession Austin

Work on account creation for Android App Greg

Mar. 13th Coordinate with Austin to have sensors/valves programmatically controllable Max

Fix bugs. Work with Max to integrate sensors/valves with ATmega. Austin

Create socket connection on Android App and Test. Greg

Spring Break Coordinate with Greg to get WiFi module reading/writing to ATmega Max

(Maybe) Work on physical frame of project, test parts, work on motor driver. Austin

Create socket connection on ATmega and Test. Greg

Mar. 27th Coordinate with Austin to read from barcode scanner programmically Max

Work with Max to integrate barcode scanner. Assist others. Austin

Keep testing connect between App and ATmega. Help with Barcode. Greg

Apr. 3rd Implementing flowchart & assemble modules. Connect to mobile app. Max

Focus on fixing any bugs involving specific parts. Assist others. Austin

Test a complete order and make sure it gets validated correctly Greg

Apr. 10th Complete implementation of flowchart and assembly of modules Max

Begin mounting pieces on frame, assist others as necessary. Austin

Test and fix bugs. Greg

Apr. 17th Mount all pieces on frame, Work on Mock Demo All

Apr. 24th Work on Final Paper and Presentation All

May. 1th Complete Final Paper All

Page 22 of 25

UIUC gjwajda2, dribins2, gram2

ETHICS AND SAFETY

The ethical aspect of this project is what makes it stand out among the others. Our prod-

uct is designed to make the world a safer place by removing the opportunity for malicious

bartenders or patrons to inject someone’s drink with a potentially harmful substance. By

automating the drink preparation process and ensuring that only the person who ordered

the drink is coming in contact with it, we successfully eliminate any uninvited interactions

between the drink and a stranger.

The first rule stated on the IEEE Code of Ethics [3] describes an individual’s responsibil-

ity to the welfare of the public in all circumstances. In our scenario, we have observed a

dangerous process that occurs frequently, and thus it is our responsibility to do everything in

our power to rectify it. We can thus improve the safety of bars, which are so often known to

be dangerous places.

In the actual implementation and physical design of our automated bartender, we will be

extremely diligent to produce no harm. We will accomplish this by observing all the necessary

security precautions to ensure that tampering with our device is difficult, if not impossible.

These precautions include establishing a secure connection with the client, and preventing

our messages from being tampered with or falsified. As for the machine itself, any circuitry

will be shielded from the user so there is no electrical danger, and our design will not use

enough power to start a fire. Although fluids may be splashed by user error in grabbing the

drink, all of our hardware will be protected and insulated.

Finally, we need to take into consideration the legislation surrounding consumption of

alcohol in the United States. Currently there are laws in place to limit the consumption to

only be allowed for those aged twenty-one years or older. Especially considering the legal

age of bar entry for campus town is nineteen, this factor needs to be taken into considera-

tion. One solution which we propose is a secure registration system which requires users

to authorize their age to be twenty-one or older before allowing them to make a purchase.

It will be unlawful to lie about one’s age during the registration process, and offenders will

be persecuted to the fullest extent of the law. The process will be very similar to how bars

and the Champaign Police coexist on campus, with occasional raids to ensure everyone is

complying. Additionally, we recognize that there are FDA requirings for using plastic tubing

to serve beverages, and we will be sure to adhere to these. The policies presented are to

Page 23 of 25

UIUC gjwajda2, dribins2, gram2

protect the safety of our customers and ensure a business’ compliance with the law.

Ultimately, our main objective is to design a machine which will allow partygoers to have a

good time and ensure their safety, while saving the bar itself money in the long run. We realize

that this will not stop all sexual assaults from occurring, as tragically there are countless more

situations in which these incidents occur, but we hope to make a dent in what seems, at first

glance, to be a daunting problem.

Page 24 of 25

Bibliography

[1] A. Sanjeev, "How to Make Arduino Board: The Easy Way - DIY Hacking", DIY Hacking,

2014. [Online]. Available: https://diyhacking.com/make-arduino-board-and-bootload/.

[Accessed: 16- Feb- 2017].

[2] "8-bit AVR Microcontrollers ATmega328/P DATASHEET COMPLETE", Atmel, 2016. [On-

line]. Available: http://www.atmel.com/Images/Atmel-42735-8-bit-AVR-Microcontroller-

ATmega328-328P_Datasheet.pdf. [Accessed: 22- Feb- 2017].

[3] "IEEE IEEE Code of Ethics", Ieee.org, 2017. [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 22- Feb-

2017].

[4] LM78XX/LM78XXA 3-Terminal 1A Positive Voltage Regulator, 1st ed. Fairchild, 2017, p. 1.

[Accessed: 24- Feb- 2017].

25

