

Universal Game Controller

ECE 445 Design Document
Evan Lee, Peter Van Fossan, and Neil Singh

Group 48
TA: Eric Clark

2/24/2017

1

1 Introduction

1.1 Objective

With the advancement of technology, the world of gaming is continuously expanding. This can be
observed just by looking at the technical specifications of video game consoles over the years. One of the
earliest video consoles, the Nintendo Entertainment System, started the industry out with a CPU that ran
at 1.79 MHz [1]. When comparing it to the modern day version of the console, the Wii U, which clocks in
at around 3 GHz, the difference is astounding [2]. While this is great for the progression of gaming,
having new hardware released every couple of years starts to have its monetary impact. With each new
console, an individual must buy new controllers that tend to be quite expensive. Unfortunately, there is no
way to avoid this situation because previous controllers tend to be incompatible with new consoles. On
top of that, with multiple consoles, there would be many different controllers that both take up space and
time to acclimate to the change in controller layout.

Our goal is to eliminate this problem by providing a universal game controller that connects to many
different consoles. This eliminates the need for the storage of the plethora of controllers for the various
consoles and also the adaptation period. However, this ultimately allows consumers to only have to
purchase one type of controller that can be used with all of their consoles and thus saving them money.
We plan to develop a single controller that can be connected (wirelessly over bluetooth) to various
dongles, which then can be plugged into the console themselves. In addition, we also intend to create an
application for mobile devices such that the user can define custom mappings of the universal controller's
buttons to the specific console’s. For right now, the only two consoles that will be supported are the
Nintendo GameCube and Nintendo 64, but hopefully in the future more could be developed.

1.2 Background

For any avid gamer, having multiple systems are a must, but the expense of having four controllers for
each might prevent some from realizing their console’s true potential. By having a single controller that
could work on multiple systems, the cost of being able to utilize the console the way it is supposed to be
greatly diminishes. Our controllers should not exceed the cost of a normal commercial controller and the
various dongles should be as inexpensive as possible so that buying new dongles does not have a large
financial impact on the consumer. This way, consumers do not need to worry as much about the cost of
getting the maximum amount of controllers for their consoles.

1.3 High Level Requirements

● Controller must control the console the same as commercial controllers for the GameCube and
N64 consoles

● Controller must work wirelessly to connect to dongles that plug into the consoles

2

● Controller must be able to have custom button mapping profiles which are able to be set from
another device such as a laptop or smartphone

2 Design

There are two major components to our design: the controller and dongle. The controller will be powered
by an onboard rechargeable battery and have a microcontroller unit (MCU) that will process all I/O
between the physical buttons, vibration motor and the bluetooth adapter which will likely be built into the
MCU. The dongle will have a similar MCU, powered by each console and data output through a single
data pin. Lastly, there will be an application interface between the controller MCU and a smartphone that
will allow the user to reprogram the mappings of each button.

Figure 1: Block Diagram

2.1 Controller

2.1.1 Lithium Ion Battery

The power supply for this controller will be a 3.7V Lithium Ion battery capable of storing 1300mAh of
energy. This power supply was taken from the original Wii U Pro controller that we will repurpose for
this project. Because this is a Lithium Ion battery, we will take extra safety precautions when dealing with
charging and designing circuits using the battery (see Ethics and Safety section). It will be charged with
the standard battery charger that comes with the Wii U Pro controller through a mini USB interface. The
battery should be able to stay in the range of 3.0v to 4.2v to ensure safe operations. Additionally, we will
also be implementing an integrated circuit to ensure the battery charges safely.

3

Requirements Verification

The battery is able to output voltage in the range
of 3.0v to 4.2v

A) Fully charge the battery
B) Use voltmeter to measure output voltage and
ensure it is less than 4.2v
C) Completely discharge battery
D) Use voltmeter to measure output voltage and
ensure it is greater than 3.0v

2.1.2 Safety Circuit

This circuit ensures that the battery is not being used if it is dead or overcharged (from 3.0v to 4.2v). This
prevents the battery from failing and causing chemical fires. The safety circuit we will be using is built
into the battery pack for the Wii U Pro Controller.

Requirements Verification

Ensure no current is drawn from its source when
the voltage supplied is not within the 3.0v to 4.2v
range.

A) Ensure current is drawn when supplied a
voltage of 3.7v

B) Ensure current is not drawn when
supplied a voltage of 4.3v

C) Ensure current is not drawn when
supplied a voltage of 2.9v

2.1.3 Voltage Regulator

The voltage regulator is put in place so that regardless of the battery voltage (which will vary with how
charged it is), the microcontroller receives a constant 3.7 volts. We will be using the Texas Instruments
TLV70237DBVR, which is a 3.7v linear voltage regulator with a 300mA current output.

Requirements Verification

1. Provides 3.7v ± 5% when given an input
voltage of 3.0v-4.2v

2. Can operate at 300mA of current

1. For both 3.0v and 4.2v, measure that the
output voltage is within 5% of 3.7v using
a voltmeter

2. Draw 300mA of current at 3.7v using a
resistor of 12 ⅓ Ω

4

2.1.4 Microcontroller

The MCU for the controller handles the interpretation of the inputs from the physical controller and relays
the information to the bluetooth adapter when requested. It also allows the bluetooth adapter to be
connected to either the dongle or the smartphone. In the case of a connection to the smartphone, the
microcontroller enables the controller to have custom profiles dictated by the smartphone.

The microcontroller we have chosen for this design is the TI CC2640 RGZ. It contains 30 GPI/O pins for
interfacing with the buttons and is clocked at 48MHz so it should be able to support microsecond
precision. We chose this for its low power consumption and low cost, but also because it contains a
bluetooth controller as well.

Requirements Verification

1. Should be able to respond to the console
polls with complete data in less than 16 ⅔
ms (1 frame) so that there is no
discernible delay.

2. Should be able to update its internal
button mapping and respond to the
request within 1 second.

1. Send a “get button info” command to the
microcontroller and ensure that the
response takes no longer than 16 ⅔ ms.

2. Send a “update button mapping”
command to the microcontroller and
ensure that the response takes no longer
than 1 second.

2.1.5 Bluetooth Adapter

The purpose of the controller’s bluetooth adapter will be two-fold. First, it will be used to receive
information from the dongle and transmit information regarding the states of the controller’s buttons and
the position of the joysticks to the paired dongle to respond to the console’s poll. Second, it will used to
receive button mapping settings from a smartphone. Because the controller’s bluetooth will be connected
to multiple bluetooth devices (dongle and smartphone), the controller’s bluetooth adapter will act as the
master in the piconet. We will set the bluetooth power to be 2.5 mW to have a 10 meter radius, which we
think will be adequate for our purposes.

Requirements Verification

1. The bluetooth must be able to operate
within a 10 meter radius from the dongle

1. Measure 10 meters from the
console/dongle and verify the controller
can connect to the dongle.

5

2.1.6 Vibration Motor

The motor will be housed within the controller and can be turned on or off by the microcontroller, which
receives this information from the dongle. The motor is used as part of the gaming experience.

Requirements Verification

1. The motor must be able to be turned on
by the microcontroller using a 3.7V input.

1.
a. Verify the motor works by connecting it

to a protoboard and providing a 3.7V
input.

b. Manually send a bluetooth signal from
the dongle to the microcontroller to
trigger the motor in the controller

2.1.7 Buttons/Inputs

We will be using the Wii U Pro Controller for our controller shell.

Figure 2: Front of Controller [3]

All the inputs feed into the microcontroller, separated by only either a potentiometer or digital button. The
left analog stick (1 in Figure 2) and the right analog stick (6) will each be connected to a dual axis
potentiometer that adjusts two voltages based on how the analog stick is moved, as well the push button
on each analog stick connected to digital input pins. The ZL trigger (top of 2) and the ZR trigger (top of

6

5) will be connected to single axis potentiometer that will adjust a single voltage based on how far down
the trigger is. The directional pad’s (13) four directions will be connected as digital buttons, along with
the A, X, Y, and B buttons (10), the select, start, and home buttons (7, 8, 9 respectively), the L and R
buttons (bottom of 2, bottom of 5), and power button (12). The LED’s (11) will be connected to digital
output pins on the microcontroller, separated by a resistor. The battery LED (4) will be connected to a
multi-colored LED, separated by a resistor.

Figure 3: Back of Controller [3]

The sync button (15 on figure 3) will be connected by a digital button to the microcontroller, as well as
the reset button (16).

Requirements Verification

1. Inputs must be of high quality that feel
good to use.

2. Inputs must be able to relay their
informational state (pressed for buttons,
axis position for joysticks) to the
microcontroller immediately.

1. Ensure that the inputs can be used
comfortably.

2. Ensure that the microcontroller can output
the input’s state to the smartphone
connected to it with precision of 16 ⅔ ms.

7

2.2 Dongle

2.2.1 Power Switch

Because the dongle will be able to plug into both a Nintendo 64 console and a Nintendo Gamecube
console, the microcontroller must be able to tell which hardware communication protocol to use and
which data lines to write to. In order to configure the microcontroller to a certain console, we will be
using a physical switch on the dongle. One position of the switch will indicate that the dongle is
connected to a Nintendo 64, while the other position will indicate that it is connected to a Nintendo
Gamecube.

Requirements Verification

1. The switch must be able to be switched
easily but not accidently

1. Verify you can switch the switch with
ease but it will not move on its own.

2.2.2 Microcontroller

This microcontroller will handle button and joystick information from the controller (from the bluetooth
adapter) and will transmit this information directly to the console. In order to do this, it will need to map
the controller information to the appropriate communication protocol based on what console it is
connected to. The microcontroller must also use the same communication protocol to receive polls and
other requests from the console and forward this information to the controller. Based on the position of
the switch, the microcontroller must be able to use the corresponding communication protocol.

The microcontroller we have chosen for this design is the TI CC2640 RGZ. It contains 30 GPI/O pins for
interfacing with the console’s signals and is clocked at 48MHz so it should be able to support
microsecond precision. We chose this for its low power consumption and low cost, but also because it
contains a bluetooth controller as well.

Requirements Verification

1. Can output signals with microsecond
resolution.

2. Can convert the controller’s state to the
connected console’s protocol and output it
within 1 frame (16 ⅔ ms).

1. Output a signal that alternates low and
high every microsecond and verify on an
oscilloscope.

2. Measure how long it takes to convert and
output the controller’s state for both
protocols and ensure it takes less than a
frame.

8

2.2.3 Bluetooth Adapter

This bluetooth adapter will be used to send polls and other useful information to the controller and to
receive button and joystick information from the controller. As stated above, the dongle must be able to
connect with the controller’s bluetooth adapter, but will act as a slave device in the piconet.

Requirements Verification

1. The bluetooth must be able to operate
within a 10 meter radius from the dongle

1. Measure 10 meters from the controller
and verify the dongle can connect to the
controller.

2.3 Nintendo 64 Controller Protocol

The physical connection for a Nintendo 64 controller consists of three pins: Ground, Bidirectional Data,
and Power. The power required for the controller to be used is 3.3V [4], which it receives from the
console.

Both the console and the controller can write to the data line. To do this without a tri-state buffer, the N64
console implements an open collector scheme to write to the data line. Both the console and controller are
connected to the input of the open collector and can either drive the line low or drive nothing using high
impedance. The output of the open collector is connected to a pull-up resistor. If neither the console or
controller are driving the data line, the output of the data line is pulled up to high. If either the console or
the controller drive the data line low, the output of the open collector is low. Neither the console or the
controller can drive the data line high.

Both written data and a clock is transmitted through the Data pin through a self-clocked signal at a rate of
4 nanoseconds per bit. To represent a high byte, the data pin will be pulled low for 1 nanosecond, then
high for the next 3 nanoseconds. Similarly, a low byte is represented by the data pin being pulled low for
3 nanoseconds and high for 1 nanosecond. When no bits are being transmitted, the data pin remains high,
but as soon as the data pin goes low, transmission starts.

To interact with the controller, the console sends a command byte to the controller and then the controller
will respond with its response. Below is a summary of the commands the console may send to the
controller.

9

Command Byte Summary

0x00 Identify: The controller responds with 3 bytes to identify characteristics about
itself.

0x01 Data: The controller responds with 4 bytes of button and joystick data.

0xFF Reset: The controller resets its internal registers and responds with its
identification bytes.

0x02 Read: Read from the controller pack memory space. The controller responds
with the 32-bit value stored in memory at the address specified by the
operands of the command.

0x03 Write: Write to the controller pack memory space. The controller writes the
32-bit value at an address, both of which are specified as the operands of the
command. The controller responds with a data CRC.

Table 1: Summary of N64 Commands [4]

The rumble motor of the controller is attached as a rumble motor pack. To initiate a rumble, the console
must write an odd number to any address at 0x8000 or above. To stop the rumble, the console simply
writes an even number to these addresses.

2.4 Nintendo GameCube Controller Protocol

The GameCube controller protocol is very functionally similar to the Nintendo 64 protocol, although
surprisingly a bit more simple. They both operate at the same frequency and in the same physical manner
(using a 1K pull up resistor [5] to drive the data line). The only differences are the commands the console
sends and the responses the controller gives. Outlined below are the different commands the console can
send with a summary of the function they perform.

Command Bytes Summary

0x01 (9 bits) Identify: The console probes the controller port to see if any controller is
attached. The controller responds to let the console know it is there.

0x400302 (24 bits) Data: The controller responds with 8 bytes of data describing the current
state of the buttons and analog sticks.

Table 2: Summary of GameCube Commands [5]

10

Below is a plot of the 24 bit command word (A) sent by the GameCube console, as well as the 64 bit
response (B) from the controller. It is apparent to see that a high bit is represented as 1 low bit then 3 high
bits, and that a low bit is represented as 3 low bits and 1 high bit. Also it shows that when the response is
finished, the line remains high to signal that there is no more data needed. This is because all bits start by
going low for at least one cycle, and therefore when the line goes low, the console and controller will
know that data is being transmitted.

Figure 4: Example of GameCube Request and Response [5]

2.5 Schematics

2.5.1 Joystick

Figure 5: Joystick Schematic

11

2.5.2 Microcontroller and IO connections

Figure 6: Microcontroller/IO Schematic

2.6 Software

Our design incorporates a good amount of software, executed by the microcontrollers in both the
controller and the dongle. The purpose of the software for the controller is twofold; one, it must be able to
connect to a smartphone (in our case iPhone) to allow for custom button mappings to be set. There will
also be software on the iPhone that will enable this to be done. On top of this, the software on the
controller must be able to interpret the physical button state and relay this information to the dongle when
requested after syncing via bluetooth to the dongle.

For the dongle, the software is slightly more interesting. It must first be able to sync to the controller over
bluetooth and then determine whether it is connected to the N64 or the GameCube (by examining the state
of the dongle switch). After that the software waits for commands from the console. It will interpret this
command and then send a data request to the controller. The controller will respond with its current
button state and the software must convert this data into a format that the corresponding console will
understand. Finally the software will output the response to the console.

Below is a communication flow showing the communication between the controller, dongle and console.

12

Figure 7: Communication Between Controller, Dongle, and Console

2.7 Tolerance Analysis

In order to capture the position of the joysticks to send to the console, the controller utilizes two
potentiometers for each joystick. Based on the position of the joystick, the pots will set variable
resistances to drop the voltages through the joystick. The microcontroller can then read the output
voltages of the pots to determine the position of the joysticks and send this information to the console.
The potentiometer resistances for the left and right directions for each joystick range from 1.60 kΩ (left)
to 5.7 kΩ (right). The potentiometer resistances for the up and down directions for each joystick range
from 1.4 kΩ (up) to 5.76 kΩ (down). The output voltages for the left and right pot connected to a
standard 3.7 V power supply will be 3.53V (left) to 1.88 V (right), and the output voltages for the up and
down pot will be 2.9 V (up) and 0.73 V (down). On startup, the microcontroller will read the voltage
output for the each potentiometer to read the neutral position voltage.

The controller communication protocols for the Nintendo 64 and Nintendo GameCube both use two bytes
to represent the position of each joystick, one for the up and down direction and another for the left and
right direction. To represent the position of the joysticks in bytes, the microcontroller must normalize the
range of output voltages for each direction to 256 values. In order to avoid overflow and underflow, we
will provide a 5% tolerance for each direction’s resistance range so that our output voltages remain in our
range. Our resistance range for the left and right direction then becomes 1.6 kΩ - .205 kΩ to 5.7 kΩ +
.205 kΩ, or 1.395 kΩ to 5.905 kΩ. The resistance range for the up and down direction becomes 1.4 kΩ -
.218 kΩ to 5.76 kΩ + .218 kΩ, or 1.182 kΩ to 5.978 kΩ. In order to avoid overflow and underflow for
rare instances when the voltages drop outside our tolerance range, we will also be clamping the voltage
reading on the microcontroller. If the value of the joystick position after normalization is less than -128

13

(for 2’s complement), the value of the joystick position becomes -128. Likewise, if the value of the
joystick position after normalization is greater than 128, the value just becomes 128.

3 Costs

We estimate a fixed salary of $40/hour, 5 hours/week for three people for a complete design. This leads
us to the following labor cost calculation.

Equation 1: Labor Cost

We will be using the following parts in our design.

Part Cost

2 Microcontrollers (TI CC2640 RGZ) $4.73 x 2 = $9.46

PCB (est.) ~$4.00

Assorted resistors, switches, wires (Digikey, est.) ~$3.00

Voltage Regulator (Digikey, TLV70237DBVR) $0.50

Wii U Pro Controller (Nintendo) $50.00

3D Print of Dongle (3D Printing Price Check) $6.00

Total $72.96

Table 3: Cost of Parts

Thus, the overall cost of developing the controller and dongle becomes $24,072.96.

4 Schedule

Week Peter Evan Neil

2/27 Finalize PCB design Begin design of Dongle
on AutoCad

Reverse engineer Wii U
Pro parts to get better
understanding of
hardware components

14

3/6 Begin programming
controller microcontroller

Finish design of Dongle,
3D print prototype. Being
programming dongle
microcontroller

Continue reverse
engineering of Wii U Pro
parts

3/13 Continue programming
controller microcontroller

Continue programming
dongle microcontroller

Begin programming
mobile application for
button mapping

3/27 Continue programming
controller
microcontroller. Begin
preliminary tests for
bluetooth communication
with dongle

Continue programming
dongle microcontroller.
Begin preliminary tests
for bluetooth
communication with
dongle

Continue programming
mobile application for
button mapping

4/3 Finalize controller
microcontroller, begin
assembly

Finalize dongle
microcontroller, begin
assembly

Finalize mobile
application

4/10 Have testable prototype
ready

Have testable prototype
ready

Have testable prototype
ready

4/17 Debug Debug Begin Final Report

4/24 Prepare Final Presentation
/ Debug

Prepare Final Presentation
/ Debug

Prepare Final Presentation
/ Debug

5 Ethics and Safety

Our biggest safety concern in this project deals with the lithium ion battery that we will be using to power
our controller. If we do not take proper precautions, we can cause serious problems such as dangerously
high currents or combustion. Lithium ion batteries can cause especially large fires if used improperly. To
prevent any safety violations, we will closely follow the ECE 445 Safe Practice For Lead Acid and
Lithium Batteries document [6].

In reference to the ACM Code of Ethics, Section 1.6, “Computing professionals are obligated to protect
the integrity of intellectual property. Specifically, one must not take credit for other's ideas or work, even
in cases where the work has not been explicitly protected by copyright, patent, etc”[7]. The protocol of
communication between the game controllers and game consoles was not created by us, nor did we
reverse engineer the protocols ourselves. We will not take credit for the technology behind the protocols.

It is also important that we are careful in regards to voltages that we are manipulating on the dongles. It is
possible to cause harm to both the Nintendo 64 and Gamecube through neglectful design of our devices. It
is our responsibility to prevent damage to the property of others according to the ACM Code of Ethics,

15

Section 1.2, “Avoid harm to others. "Harm" means injury or negative consequences, such as undesirable
loss of information, loss of property, property damage, or unwanted environmental impacts”[8]. To
prevent this we will use a microcontroller that can not output more than 5V DC.

16

6 References

[1] P. Diskin, "NES Documentation," in NESDev , 2004. [Online]. Available:
http://nesdev.com/NESDoc.pdf. Accessed: Feb. 7, 2017.

[2] "Wii U System Specs," in Nintendo Today , NintendoToday, 2011. [Online]. Available:
http://nintendotoday.com/wii-u-system-specs. Accessed: Feb. 7, 2017.

[3] "Wii U Operations Manual," in Nintendo . [Online]. Available:
https://www.nintendo.com/consumer/downloads/wiiu_operations_manual_en_la.pdf. Accessed: Feb.
20, 2017.

[4] K. Thompson, "N64 Controller protocol," 2015. [Online]. Available:
http://kirrenthompson.com/?p=53. Accessed: Feb. 20, 2017.

[5] "Nintendo Gamecube Controller Pinout,". [Online]. Available:
http://www.int03.co.uk/crema/hardware/gamecube/gc-control.html. Accessed: Feb. 7, 2017.

[6] . [Online]. Available:
https://courses.engr.illinois.edu/ece445/documents/GeneralBatterySafety.pdf. Accessed: Feb. 20,
2017.

[7] "ACM Code of Ethics and Professional Conduct," in acm.org , 2017. [Online]. Available:
https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct#sect1. Accessed:
Feb. 9, 2017.

[8] "IEEE code of ethics," in ieee.org , 2017. [Online]. Available:
http://www.ieee.org/about/corporate/governance/p7-8.html. Accessed: Feb. 9, 2017.

[9]J. Buxton, "Li-Ion battery charging requires accurate voltage sensing," 1995. [Online]. Available:
http://www.analog.com/en/analog-dialogue/articles/li-Ion-battery-charging-accurate-voltage-sensing.
html. Accessed: Feb. 25, 2017.

17

