
1

Supply and Demand Parking Meter - Design Review
Project #33

Adam Barbato - barbato2
Nick Johanson - njohans2

TA - Yuchen He

 2

Table of Contents:
1. Introduction………………...……………………………………..……….……………..3

1.1 Objective……………………………………..……….……………………………..3
1.2 Background……………………………………..……….………………………….3
1.3 High-level Requirements……………………………………..……….….….…….3

2. Design
2.1 Block Diagram……………………………………..……….………...…………….4
2.2 Physical Design……………………………………..……….……………………..5
2.3 Calculations for Placement of Parking Meter ………………………..………….6
2.4 Camera ……………………………………..……….……………...……………...7
2.5 Xbee Transceivers……………………………………..……….………………….8
2.6 Parking Meter Processing Unit……………………………………..….….………9
2.7 PMPU Software……………………………………..……….………………….....11
2.8 Backend Software……………………………………..……….……….………...13
2.9 Circuit Diagram and Preliminary PCB…………………………………..…..…..16
2.10 Tolerance Analysis…………………..…………………………………..…..…..19

3. Cost and Schedule
3.1 Cost Analysis……………………………………..……….……………………....20
3.2 Schedule……………………………………..……….…………………………....21

4. Ethics and Safety
4.1 Safety……………………………………..……….………………………………..23
4.2 Ethics……………………………………..……….………………………………..23

5. Citations ……………………………………..……….………………………………...24

 3

1. Introduction

1.1 Objective
Parking in dense urban areas is a problem where no obvious solution exists. Many approaches
attempt to make it easier to find parking spots, however we believe the problem is that when
people spend copious amounts of time searching for the spot it doesn’t exist. Thus, the real
issue is that there isn’t enough parking, or perhaps parked vehicles are inadequately distributed.
If parking is equivalently priced across an entire city people are incentivized purely on the
distance between their parking spot and their destination, so they park as close as possible.
This results in particularly high parking densities near popular locations and the inevitable 30
minute quest for a parking spot.

We propose a parking meter which can be implemented with a backend capable of monitoring
prices across a city and creating economic incentives for a more favorable parking distribution.
This parking meter would monitor the usage of spots it’s responsible for and the prices that were
applied, then this information would be relayed to another computer which will alter the prices
proportionally. Prices would be reduced in areas with low density and increased in places with
high density. The algorithm will have a goal density in mind and attempt to reduce the maximum
density below that goal.

1.2 Background
Finding street parking is an annoying problem anybody who was driven into a large city has
encountered. However, bigger problems with free, or underpriced, parking was laid out in the
book The High Cost of Free Parking , in which UCLA Professor Donald Shoup explains that free
parking encourages driving, which encourages that more free parking be built, which
encourages more driving and so forth [2]. This eventually leads to city maps that are largely
empty parking lots. So not only could our project, if implemented, help people plan their trips
and daily routines better by offering them choices of parking spots and prices but it could also
help cities restore walkability.

1.3 High-level Requirements

● Correctly identify the number of cars within the FOV of the camera(s) at 5 minute
intervals with at least 90% accuracy in sunny weathered daylight conditions.

● Reduce the maximum density in a simulation to below 85% or the difference between
the maximum and minimum density by 15%.

● Have Camera, CV, and communications running on custom built hardware.

 4

2. Design

2.1 Block Diagram
Each parking meter will contain an ATMega2560, a camera, a voltage regulator, an Xbee
transceiver, and the 16MHz oscillator. The ATMega2560 will store images and run the computer
vision algorithm for recognizing cars. The camera will take images at set intervals and send
them to the ATMega2560 for processing. A voltage regulator will ensure the external DC power
is regulated to 5V. The Xbee transceiver will serve as the network link to the “server” computer.
Lastly, the 16MHz oscillator will serve as the clock for the ATMega2560.

Figure 1: Block Diagram of project

 5

2.2 Physical Design

The design for the physical parts of this project is fairly simple due to the low number of physical
components. It will be entirely self-contained within a parking meter shaped box that will contain
the camera module, PMPU and one of the two Xbee transceivers. This group of hardware will
be placed around 20ft from the cars it’s going to surveil, as explained in the calculation below,
and will see each of its three parking spots from a different angle to ensure close proximity to
the cars. The other transceiver will be located up to 100ft away from the parking meter and will
be directly connected to an internet connected PC.

Figure 2: Physical Design of Parking Meter

 6

2.3 Calculation for Placement of Parking Meter

Since this project is designing a parking meter, part of the physical design is where it will be
placed on the street. The optimal placement is as close as possible to the street while still being
able to see three cars, as specified in the requirements. We calculated that optimal placement
as shown below in Figure 5. Where L Parking is the regulation size of a parking space which is 18ft
[1], 2L Parking is twice the regulation parking space size and the length the camera needs to see so
that it sees at least half of every spot, θ is the angle of the camera lens: 60° or ⅔*π radians, and
x is the optimal distance to the curb to place the meter. Using that information we can find x by
the following equations:

an(θ)T = x
2LParking

0.78 ftx = Tan(θ)
2LParking = 36

Tan(2π/3) = 2

Figure 3: Reference for calculation of optimal meter placement

 7

2.4 Camera (2 points)
● The camera is the piece of the device that collects all the data for the system. It will be

mounted on the parking meter at a 60 degree angle from the street as to get the best
angle for viewing multiple cars.

● At least every five minutes it will receive a signal from the PMPU unit to take a QQVGA
(160 X 120 pixels) picture of the three parking spots within its view and send the picture
back to the processing unit. This resolution was chosen so multiple pictures could fit in
the PMPU’s 256KB of storage. The timing was chosen because this camera model takes
up to a minute to transfer a photo, so the extra timing was added for processing. The
slow camera was chosen due to the constraints of the project needing only large time
intervals.

Most of the camera’s functions are requirements on the software that runs it, not the camera
itself

Requirements Verifications

1. Angle and placement of lens must allow
three cars to be captured in one picture

1.1 As shown in Figure 5 below, make sure
camera is positioned such that 60 degree
angle of lens could capture three cars.
1.2 Hook up camera to external display via
video-out pins and ensure that three cars are
visible

2. Must run on 5±.5V <500mA 2.1 Hook up to 5V power regulator using 5V
and GND pins. Ensure that the camera boots
up via LED indicator.

Figure 4: Camera Circuit Diagram

 8

2.5 Xbee Transceivers (2 points)
● This unit actually consists of two physically separate radios, one connected to the PMPU

and one connected to an internet connected computer that’s away from the street.
● This unit is responsible for providing a wireless connection between the two parts it's

connected and allows the PMPU to operate without an internet connection. This is to be
implemented with an Xbee Series 1 radio solution that uses proprietary radio software on
a 2.4 GHz channel has adequate bandwidth for this application.

Xbee Transceiver (2 points)
Most of the Xbee’s functions are requirements on the software that runs it, not the Xbee itself

Requirements Verifications

1. Must run on 5±.5V 2A

1.1 Hook up to 5V power regulator using 5V
and GND pins. Ensure that the Xbee boots
up via LED indicator.

2. Must be able to transmit data both
directions between the parking meter and a
waiting computer within 50 ft of the parking
meter

2.1 Hook up one Xbee to Arduino or PMPU
and the other to a laptop using the provided
Xbee software
2.2 Use our software to transmit continuous
data while moving Xbees away from each
other
2.3 Confirm on the laptop that the Xbee
receives data until at least 50ft away

3. Must transmit at least 1 kb/s 3.1 Repeat verification 2, ensuring that the
transmission rate is greater than 1 kb/s using
the Xbee software on the laptop

Figure 5: Xbee Circuit Diagram

 9

2.6 Parking Meter Processing Unit (PMPU) Hardware (6 points)
● The PMPU is the main processing unit on the Parking Meter itself and consists of three

major parts: ATMega2560, a 5V regulator, a 16MHz oscillator circuit. It also includes
smaller circuits for resetting the device and an “ON” LED indicator. It provides power to
both the camera and the Xbee Unit and controls both of their actions. A more detailed
circuit schematic can be found in Figure 6 and 7

● The ATMega2560 was chosen as the main processor because it is the most powerful
Atmel chip that still allows the Arduino bootloader to be used on it.

Requirements Verifications

1. Must be able to regulate incoming 12V DC
to at least 5±.5V and provide at least 3A
output

1.1 Hook up 12V DC power supply
1.2 Measure output current and voltage, pins
80 and 99 on ATMega2560, ensuring that
they are within the acceptable ranges

2. Must produce a 16±.5MHz clock signal 2.1 Hook up output of oscillator circuit, pins
33 and 34 on ATMega2560, to oscilloscope
and measure the frequency for at least 30
seconds
2.2 Graph data and ensure it is all within the
bounds

3. ATMega2560 must run on 5V <1A while
doing all processes

3.1 While circuit is powered, ensure that “On”
LED light is lit from the ATMega’s output

 10

Figure 6: PMPU Circuit Diagram

 11

2.7 Parking Meter Processing Unit Software
● This is the software that runs on the ATMega2560 in the PMPU hardware. This software

is responsible for interfacing with the camera and the Xbee and does four main
operations:

○ Instructs the camera to take a picture and saves the picture to memory
○ Using a pre-stored picture of the area with no cars, performs a Frame

Differencing background subtraction of the new picture
○ Performs an FFT of the newly subtracted picture and compares it to a pre-stored

spectrum to ascertain how many cars are parked in the spots it is monitoring
○ Send parking data and receive price information from backend software via Xbee

radio

The PMPU Software is much more linear than the backend software, as is fitting for a
microprocessor. The software mainly goes in a loop of: take picture, process picture, transmit
data. The first thing the software does is request the camera to take a picture and transmit it to
the ATMega. This can take up to a minute so the software will continue to check if the process
is done. Once it has the new image it will load the old reference image and begin the
background subtraction process by using a “Frame Differencing” algorithm. It then crops the
newly subtracted image into three pre-defined sections that represent each parking spot. It then
performs an FFT on each new image and compares it to a pre-stored spectrum to determine if a
car is parked there. Once completed all images, it sends the data to the backend and waits for a
response which may contain new price info. Once the response is received, it updates prices if
necessary and begins again.

Figure 7: Flowchart for PMPU software

 12

Requirements Verifications

1. Must be able to store two QQVGA pictures
at once
2. Must be able to request a picture from the
camera, receive and store it within 1.5
minutes

1.1 Hook PMPU up to laptop and launch
provided software
1.2 Request PMPU take and store two
pictures
1.3 Request the two stored pictures
1.4 Ensure it returns two QQVGA pictures

2. Must be able to request a picture from the
camera, receive and store it within 1.5
minutes

2.1 Hook PMPU up to laptop and launch
provided software
2.2 Request PMPU take and store one
picture
2.3 Record the time it takes to finish and
ensure it is less than 1.5 minutes

3. Must be able to perform a Frame
Differencing background subtraction using
two separate QQVGA pictures and attenuate
the background by 5 dB of the foreground
within 1.5 minutes

3.1 Hook PMPU up to laptop and launch
provided software
3.2 Load a background and modified image
with different foreground into PMPU
3.3 Request it to background subtract
3.4 Ensure it finished in 1.5 minutes
3.4 Request the returned picture
3.5 Verify picture’s background has been
attenuated by 5 dB

4. Must be able to perform an 8 bit FFT on a
picture within 1.5 minutes

4.1 Hook PMPU up to laptop and launch
provided software
4.2 Load image into PMPU
4.3 Request it to perform an FFT
4.4 Ensure it finished in 1.5 minutes
4.4 Request the returned spectrum
4.5 Independently run an 8-bit FFT on the
image
4.6 Verify that the two spectra are the same

5. Must be able to transmit parking data via
Xbee to backend and receive response within
30 seconds.

5.1 Hook PMPU up to laptop and launch
provided software
5.2 Make sure that the receiving Xbee
attached to the PC running the backend
software is in range and running
5.3 Request that the PMPU send parking
data
5.4 Check the PC to make sure it received
the data
5.5 Ensure it returned in 30 seconds

 13

2.8 Backend Software
This algorithm will control the pricing model that the meters will implement. The majority of the
time is spent idling until data is received. Once a packet is received we mark that we are
currently in a data collection cycle and identify which meters we’ve received information from. If
a sufficient amount of time has passed (1-2 seconds) without receiving data while in collection
mode we check an array to determine which meters we don’t have data from and poll them for
their data. Once we have everything we record and update our parking density information. If
the end of a time slot has been reached we can calculate the new pricing model and send it to
the meters.

Figure 3: Flowchart for the backend software

 14

Data Collection (5 Points)

● Every 5 minutes data is sent from the meter to the backend, when that occurs an ID as
well as the parking data will be sent via the transceiver. When it arrives it can be queued
and processed later while the system accepts all the other requests. Once requests have
stopped for 1 second we can check to see if any requests were missed and poll the
missed meters individually.

Requirements Verification

1. Data from all meters should be collected
successfully every 5 minutes.
(3 points)

1.1 Set up a data packet and send it to
backend using transceiver.
1.2 Confirm it was received.
1.3 Backend can send acknowledge
1.4 Use timing data to establish upper bound
on number of meters.

2. If data is missed, it should poll the meters it
doesn’t have data for.
(2 points)

2.1 Repeat process above but have backend
randomly ignore some information on first
pass
2.2 Have backend print message when all
data is received.
2.3 Check array to confirm all data was
received.

Data Storage (2 Points)

● The backend needs to maintain nine separate arrays: received requests, four pricing
models, and four parking density arrays. The “received requests” array will store which
requests have been received during the data collection cycle. The pricing model arrays
will store the prices to be used for each time slot during the day. The parking density
arrays will store the parking densities for the current day as collected from the parking
meters. As a result the memory usage per meter is 17 bytes (1 byte for request, 4x4
bytes for pricing).

Requirements Verification

1. Arrays should contain correct data
at correct index. After being received
by collection process.
(2 points)

1.1 Generate meter data and send it sequentially
over transceiver.
1.2 Check array values and confirm they are in the
appropriate location

 15

Control Algorithm (8 Points)

● We intend to implement a simple proportional-derivative (PD) control algorithm. When all
the data for a time slot has been collected it will calculate the new pricing model for that
time slot. If the density for an area is too high the price will increase proportionally
depending on how far it is from the goal. As the density approaches the goal the price
will change slowly to avoid the price “bouncing” from day to day.

Requirements Verification

1. Changes in prices should reflect the
difference between the current density and
the goal. If the current density is too high the
price should proportionally increase, if it’s too
low the price should proportionally decrease.
(4 points for proportion)
(4 points for derivative)

1.1 Setup the algorithm and give it a parking
density
1.2 Confirm the correct change happens.
1.3 Set the density close to the goal
1.4 Monitor changes as density changes
towards goal to confirm the change
decreases.

Simulation System Test (10 Points)

● A city simulation will be used as a system test. Personalities will be generated according
to a distribution. Each personality will be assigned a location they want to park at, how
much they are willing to pay, and a bound on how far away they will park. The bound
ensures they will inevitably find a spot to park in, regardless of price. Afterwards parking
prices will be adjusted and the personalities will be generated and will attempt to park
with the updated pricing model.

Requirements Verification

1. Generated personalities should resemble
the designated distribution with error <10%
(3 points)

1.1 Generate 10, 100, 1000 personalities
based on distribution.
1.2 Graph personalities and calculate
average error.

2. Parking densities should converge and
form a stable system within 100 iterations.
(1 point for 1x1)
(3 points for 5x5)
(3 points for 20x20)

2.1 Run simulation for a single grid tile using
a park or no park decision
2.2 If this system converges expand to 25
tiles (5x5)
2.3 If this converges expand to 20x20 for final
test. Graph densities after at various numbers
of iterations (5, 10, 20, 30... etc) to confirm
system is converging.

 16

2.9 Circuit Diagram and Preliminary PCB

The circuitry for this project consists of seven major parts, as marked in Figure 6 and shown in
Figure 7. Three of these parts are pre-built packages: the ATMega2560, the Arduino TTL
Camera, and the Xbee Series 1 transceiver. The other four are small circuits made to support
the larger packages and they include: a 5V regulator circuit for powering all three of the large
packages, an “On” LED indicator for the ATMega, a reset switch for the ATMega, and a 16MHz
oscillator for the ATMega’s clock. Below in Figure 8 is the preliminary PCB for this circuit.
Changes need to be made and the Xbee may be moved off-board, but this is preliminarily what
it looks like.

 17

Figure 6: PMPU Circuit Diagram with sections marked

Figure 7: Clean PMPU Circuit Diagram
(Eagle CAD libraries for ATMega [7] and Xbee[8])

 18

Figure 8: Preliminary PMPU PCB

 19

2.10 Tolerance Analysis

Software Tolerance Analysis

The component that poses the largest risk for project failure is the control algorithm. If
the algorithm doesn’t work or is ineffective then the prices will adjust improperly. However, a
tolerance analysis of this component would require knowing the proportionality constants after
tuning the control algorithm, as well as obtaining results from a system test. From there it would
be possible to evaluate the tolerance from seeing how many meters providing incorrect
information would result in significant error in the pricing model. Thus, a complete tolerance
analysis of this component will be completed at a later date.

Hardware Tolerance Analysis

The part of this project that required the most stringent hardware design choices was the
oscillator circuit that powers the ATMega2560’s internal clock. The main design choices that
had to be made was what type of oscillator to use, at which frequency to run it, and which
specific oscillator to buy. Looking at the ATMega’s datasheet [6] we can see that it accepts
frequencies from as low as 2MHz to as high as 16MHz.

Generally, the lower frequency option is available for those who would use the chip in
some power constrained environment, such as when using a battery. Since we are not power
constrained in this project and need as much processing power as possible, we will be using the
maximum frequency of 16MHz.

Next, we had to decide on what type of oscillator to use. There are two main types of
oscillators that Atmel recommends for this purpose, crystal oscillators and ceramic oscillators.
The main difference between these two type are their Q factors and their tuning abilities. Q
factors are a way of measuring how spread out the frequency they generate is from its center
and is calculated by:

 Q = fr
Δf

Where Q is the Q factor, f r is the resonant frequency of the oscillator and Δf is the Full Width at
Half Maximum, or the bandwidth where the oscillation power is at least half the resonant power [9].
Essentially, the larger the Q factor, the more concentrated the bandwidth is and the more regular it
will run the ATMega. Atmel suggests the highest Q Factor available for the best operations.
However, we also had to consider the oscillator’s tuning abilities. Tuning is process of using other
components in the circuit to change the resonant frequency of the oscillator and ceramic oscillators
can tune much easier than crystals can. This is most useful when needing to dynamically scale
processing power, but again, since we will always operate at maximum frequency, we do not need to
tune. Due to this and its increased Q factor, we decided to go with a crystal oscillator.

Finally we had to decide which oscillator to buy. Looking at the tolerances for Atmel chips,
they run the best when crystal oscillators have a tolerance of less than 400 PPM tolerance [6] Due to
this, we decided to go with the 16MHz crystal from adafruit as it has a 300 PPM tolerance [6].

 20

3. Cost and Schedule

3.1 Costs

Costs of Labor

Name Hourly Rate Hours Invested Cost

Nick Johanson $35 120 $4,200

Adam Barbato $35 120 $4,200

 Total Labor Cost $8,400

 Total Labor Cost with
Overhead (x2.5)

$21,000

Costs of Parts

Part Quantity Unit Cost Total Cost

ATMega2560 2 $13.25 $26.50

XBee 1mW Trace
Antenna (802.15.4)

2 $24.95 $49.90

TTL Serial Camera 1 $54.95 $54.95

Voltage Regulator-5V 2 $0.95 $1.90

16MHz crystal
oscillator

1 $0.75 $0.75

Arduino Mega 1 $45.95 $45.95

 Total Cost of Parts $179.95

The combination of labor and parts results in a total cost for the project of $21,179.95.

 21

3.2 Schedule

Week of: Person Responsibility

January 30th Nick Johanson Proposal: Flow chart, block diagram, and
R&V for software.

Adam Barbato Proposal: Circuit schematic, Safety/Ethics/
and introduction.

February 6th Nick Johanson Update software flowchart, break software
down into testable modules

Adam Barbato Select electronics and design PCB

February 13th Nick Johanson Update information from proposal for mock
design review

Adam Barbato Update information from proposal for mock
design review

February 20th Nick Johanson Update software flow chart, software R&V,
write cost analysis

Adam Barbato Update Block diagram, hardware R&V, write
tolerance analysis.

February 27th Nick Johanson Start coding backend data collection module

Adam Barbato Start coding computer vision algorithm on
test hardware

March 6th Nick Johanson Finalize data collection module and begin
testing

Adam Barbato Finalize CV Algorithm on test hardware.
Ensure it works

March 13th Nick Johanson Code data storage module and test

Adam Barbato Test hardware on breadboard. Finalize and
order PCB

March 20th Nick Johanson Spring Break: Work on backlog / start
coding simulation

Adam Barbato Spring Break: Work on backlog

 22

March 27th Nick Johanson Begin testing on simulation for 1x1 grid

Adam Barbato Transfer algorithm to Arduino IDE

April 3rd Nick Johanson Test simulation using 5x5 and 20x20 grid

Adam Barbato Test algorithm with camera and Xbee on
test Arduino. Solder PCB together

April 10th Nick Johanson Tune control algorithm and run many
iterations of simulation

Adam Barbato Test on finalized hardware

April 17th Nick Johanson Mock Demo

Adam Barbato Mock Demo

April 24th Nick Johanson Final Demo

Adam Barbato Final Demo

 23

4. Ethics and Safety

4.1 Safety

In regards to safety, due to the mundane nature of the project and its goals the only real safety
risk during construction would relate to soldering components to a PCB or gathering data while
near moving vehicles. In regards to soldering, standard lab safety guidelines which relate to
soldering and general lab safety apply here and will be followed and in regards to street safety,
standard practices will also apply and be followed.

In a theoretical real world application there are some extended safety concerns. The final
version of the meter would need to have a waterproof housing to safeguard against electric
shocks and to protect the internal electronics. Additionally, data security would be a crucial
component to ensure personal information isn’t stolen or abused.

4.2 Ethics

A large ethical issue that has been brought to our attention is the ability to abuse our system to
price gouge or discriminate against impoverished people. Any malicious act like this would go
directly against the IEEE Code of Ethics’ point 1 about keeping the public’s welfare in mind and
point 8 by discriminating against those who cannot pay [5]. This is absolutely a possibility with
our system, as it would be with any system that can control prices of any kind. However, the
system was not designed to work that way and changing the system to accomplish either of
these unethical goals would be against its main purpose: to make easy parking more available
for everybody.

Additionally we will likely be using third party software libraries and it is important for us to credit
the authors appropriately by point 7 of the IEEE Code of Ethics [5].

 24

5. Citations

[1] "17.24.050 Parking Facility Layout and Dimensions." 17.24.050 Parking Facility Layout

and Dimensions. N.p., n.d. Web. 21 Feb. 2017.
[2] Shoup, Donald C. The High Cost of Free Parking. Chicago: Planners, American

Planning Association, 2011. Print.
[3] "Arduino - Setting up an Arduino on a Breadboard." Arduino - Setting up an Arduino on a

Breadboard. N.p., n.d. Web. 21 Feb. 2017.
[4] "TTL Serial Camera." Wiring the Camera | TTL Serial Camera | Adafruit Learning

System. N.p., n.d. Web. 21 Feb. 2017.
[5] "7.8 IEEE Code of Ethics." IEEE Code of Ethics. IEEE. n.d. Web. 21 Feb. 2017.
[6] “Atmel AVR2067: Crystal Characterization for AVR RF” Atmel Corporation. n.d. Web. 24

Feb 2017
[7] “SparkFun-RF.lbr” SparkFun Eagle Libraries. SparkFun. N.d. Web. 23 Feb. 2017.

<https://github.com/sparkfun/SparkFun-Eagle-Libraries/blob/master/SparkFun-RF.lbr>
[8] “Atmel CAD Library for Cadsoft EAGLE Software” Eagle CAD Libraries. element14. N.d.

Web. 23 Feb. 2017.
<https://www.element14.com/community/docs/DOC-64259/l/atmel-cad-library-for-cadsoft
-eagle-software>

[9] "Quality Factor / Q Factor Tutorial." Quality Factor Tutorial | Q Factor
Radio-Electronics.com. N.p., n.d. Web. 25 Feb. 2017.

