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1 Introduction 
 
1.1 Objective 
The Theremin is a musical instrument that a player can play without ever having physical contact 
between the player and the device. It requires two hands to control the pitch and volume by 
changing the charge in its antennas. The antennas work the same way as a capacitor. After its 
invention, another form of Theremin was released, which is known as the Digital Theremin. 
Digital Theremin works differently because it receives an input and converts the input to digital 
format by sampling the input before processes the input by using digital signal processing 
techniques. After that, it converts the digital output to an analog signal before it goes to the 
speakers.  

We believe that a lot of manufacturer of Digital Theremin are focusing on the wrong aspect. 
After examining current Digital Theremin in the market, we notice that manufacturers push for 
fancy features or sounds rather than improving the quality of the sound itself and striving for real 
innovation to the product. Therefore we proposal to implement a digital processing algorithm 
and apply some other signal processing technique which will improve the sound by making it 
sound closest to the original Analog Theremin. Furthermore, we would like to have the foot 
control a pedal in order to modify the volume instead of using a hand. In doing so, we can now 
use both hands to play two unique notes simultaneously. Another unique feature we would like 
to add is having a specific LED light up to represent the note being played. This will allow 
viewers to follow along and provide another form of entertainment besides sound.  

1.2 Background 
The Theremin is a classic electronic instrument made in the 1920s. It is a dynamic instrument 
with a unique sound and an even more unique way to play the instrument. The Digital Theremin 
needs more rich and distinct sounds with broader frequencies and dynamics. In ECE 395, one of 
our group members has created a working prototype Digital Theremin (a sensor, audio output, 
and microcontroller). However, it is far from sounding instrumental and lacks unique features. A 
company called Moog has already put a Digital Theremin on the market. Moog design focused 
on very different aspects than our group priority in innovating the instrument. Their Theremin 
focuses more on a lot of sound effects as well as automatic pitch correction.  

We will revise the design of the Theremin to have two distance sensors for detecting the left and 
right hand’s distance away from the sensors. In doing so we can play two different notes at the 
same time which opens to a wider range of different sounds it can play. To further that range, we 
will also use a waveform generator to transform the square wave to other waveforms like 
Triangle, Sine, and Sawtooth waveforms. Not only do we want it to expand the range of the 
sound, we want to provide a smoother volume control to the instrument. By adding the foot pedal 
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that adjusts the sound, it achieves a smoother volume control. This mechanic is found in a piano 
for the same purpose. Lastly, we all agree it would be fun to see the notes being played through 
the display of LED array manipulation. 

1.3 High-Level Requirement 
Quantitative characteristics this project must exhibit the followings: 

 ●  It can produce frequencies within the range 65.41-261.63 Hz.  

 ●  It can play square, sawtooth, triangle, and sine waveforms.  

 ●  The LED array accurately display the different notes being played.  

2 Design 
 
2.1 Block Diagram 
In order for this instrument to operate successfully, it must include a power module, control 
module, sensor module, waveform module, and LED module as depicted in Figure 1. The Power 
module supplies voltages to other modules in order for them to perform their operations. The 
Sensor Module is the one that perceives information about the player’s hand position relative to 
the sensors. The information is then processed by the control module and generates a waveform 
to be played. The waveform module will manipulate and utilize the waveform in order to 
generate a sound representation of the note to be played. The LED module is the visual 
representation of the note to be played by lighting the corresponding LED representing one of 
the notes in the octave. 
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Figure 1: Block Diagram 

 
2.2.1 Infrared Sensors 
We will use two infrared Sensors for our instrument. The infrared sensors are Sharp 
GP2Y0A21YK0F sensors. They work like the antennas of original the Theremin. Each sensor 
detects the distance between the sensor and each of player’s hand in order to generate high and 
low pitches. Both infrared sensors require 5 volts to function and output analog voltages vary 
between -0.3 to 0.3 volts. They accurately measure distinct distances from 10 to 80cm. 
Hardware-wise, both sensors are identical. However, one sensor will send data for generating 
higher pitches while the other sensor sends data for generating lower pitches. The pitches being 
played will be determined by the microcontroller. One sensor will control the higher frequencies 
of 130.81 to 523.25 Hz (C3 to C5 or two octaves) while the other sensor controls the lower 
frequencies of 65.41 to 261.63 Hz (C2 to C4 or two octaves). Notice that there is overlap in the 
frequency ranges.  
 
 

Requirement Verification 
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1. The sensor must be able to measure 
distances between the sensor and player’s 
hand from 10 to 80 cm. with 8% of 
acceptable deviation 

2. Update period is approximately 30 ms with 
10% of acceptable deviation 

1. A ruler will be used to measure distances 
from the sensor while changes in output 
voltage will be tested with a voltmeter. 
Voltage fluctuations must detected at 
desired maximum and minimum distances.  

2. The update period will be tested using an 
oscilloscope to measure the period between 
changes in information. 

 
2.2.2  12-bit Analog/Digital Converters 
The Analog/Digital converters will convert analog signal from each infrared sensor to digital 
signal, which will be feed to the microcontroller because the microcontroller can only take 
digital information. It is designed to read input voltages in the range -0.3 +/-0.1% to 0.3 +/-0.1% 
volts, which makes it perfect for using alongside the distance sensors. The reason our group 
decided to convert the analog voltage into 12 bits is because 12 bits is the standard amount of 
bits used for MIDI. With 12 bits, MIDI can accurately represent thousands of distinct tones, 
which is perfect for this project because our digital theremin needs to be able to play thousands 
of semitones. A semitone is a tone that is in between two notes that are a half-step apart. If two 
neighboring keys on a piano represent two notes a half step apart, a semitone is a frequency that 
is in between those of the neighboring notes. The reason including semitones is important for this 
project is because a theremin gradually raises and lowers pitch until the next note is reached. It 
doesn’t abruptly shift notes when a certain distance is sensed. This is one aspect that gives it its 
characteristic sound. With 12 bits, plenty of semitones can be represented without causing any 
major latency issues due to extended periods of processing time. The TLC2543C has a maximum 
delay time of 2.2 microseconds, which should cause no latency problems.  
 
 
 
 

Requirement Verification 

1. The output signal of the ADC is 12 bits in 
length 

2. The ADC has a delay time of no more than 
3 microseconds with 20% of acceptable 
deviation 

1. Check datasheet to ensure that the ADC 
outputs 12 bits 

2. The amount of bits and delay time will be 
verified using a software such as modelsim 
to analyze the output. 

 
2.2.3 Microcontroller: LPC1114FN28/128 
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The microcontroller is the main component for processing information because it has to process 
information from the two sensors in order to generate correct pitches, then choose a correct LED 
to light up based on current pitch. The “Algorithm for Microcontroller” section below explains 
how the algorithm computes the pitches to be played as well as how to determine which LEDs 
have to light up. Our criteria for finding a microcontroller were simple. We needed one with an 
adequate amount of general purpose input/output pins. In our case, we need at least 14 GPIO 
pins. The microcontroller also has to run our algorithm with a very minimal probability of 
creating delayed responses between the distance readings and the note being heard from the 
speaker. The LPC1114FN28 microcontroller is a 32 bit microcontroller with 22 GPIO pins and 
4kB of SRAM. These specs make it extremely unlikely that our algorithm will cause excessive 
delay of the sound being produced.  
  
 

Requirement Verification 

1. The microcontroller runs the algorithm 
quick enough that the sound being 
produced from the speaker changes no later 
than 0.15 seconds after distance reading 
changes with 0.5% of acceptable deviation 

1. An oscilloscope will be set up to read 
signals from the Sharp GP2Y0A21YK0F 
sensor as well as the audio output after the 
foot pedal. The difference in start and stop 
times in the signals can then be measured. 

2. Modelsim will  be used to time the digital 
signal generated by the analog/digital 
converters as well as time the digital 
outputs of the microcontroller that lead to 
the waveform generators. 

 
 
2.2.4 Waveform generators 
Waveform generators will be used to generate different kinds of wave because the 
microcontroller can only produce square waves. However, classical musical instruments can 
generate many different kinds of waveform. There will be two waveform generators for each low 
and high pitch. This component will make the instrument be able to generate various kinds of 
sound because each type of waveforms can make different sound.  
 

Requirement Verification 

1. The waveform generator must be able to 
produce sine wave, triangle wave, and 
sawtooth wave. 

2. Maximum output amplitude should be 3 

1. Test the component with an oscilloscope to 
see what waveform can this component 
produce. 

2. The maximum amplitude can be tested by 
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+/- 5% volts peak-to-peak because we want 
to let it output to an audio jack. 

using an oscilloscope. Make sure that if 
supply voltage is 3 +/- 5% volts, then the 
peak amplitude should be 3 +/- 5% volts 
also. 

 
 
2.2.5 Decoder/Demultiplexer 
This component will decode radix-2 data line to select which LED to light up. We need the 
decoder because we can reduce data line to be 4-bit data line instead of 12-bit data line. This 
way, the microcontroller does not have to waste its pins. Only one LED will be lit up at a time, 
so decoder is a good choice. The supply voltage is from  -0.5V to 7V which is enough for 
lighting up each LED. 
 

Requirement Verification 

1. It has to be able to decode to select at least 
12 different output. The closest minimum 
number of outputs is 16 because 4-bit data 
line represents 2^4 = 16 different possible 
values. 

2. The outputs have to have at least 3 +/- 5% 
volts in order to supply each LED. 

1. The outputs and the selector can be tested 
by constructing a simple LED circuit. 
Make sure that LED lit up corresponds to 
the selector. 

2. The maximum supply voltage is 7 volts, so 
3 +/- 5% volts should work perfectly. It can 
be tested by using voltmeter to see if the 
supply voltage is 3 +/- 5% volts, do outputs 
also have 3 +/- 5% volts. 

 
 
 

LED number Note Frequency range (Hz) 

1 C 130.81  -  141.71 OR 261.63  -  283.43 

2 C# / Db 141.71  -  152.61 OR 283.43  -  305.23 

3 D 152.61  -  163.52 OR 305.23  -  327.04 

4 D# / Eb 163.52  -  174.42 OR 327.04  -  348.84 

5 E 174.42  -  185.32 OR 348.84  -  370.64 

6 F 185.32  -  196.22 OR 370.64  -  392.44 

7 F# / Gb 196.22  -  207.12 OR 392.44  -  414.24 
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8 G 207.12  -  218.02 OR 414.24  -  436.04 

9 G# / Ab 218.02  -  228.93 OR 436.04  -  457.85 

10 A 228.93  -  239.83 OR 457.85  -  479.65 

11 A# / Bb 239.83  -  250.73 OR 479.65  -  501.45 

12 B 250.73  -  261.63 OR 501.45  -  523.25 

 
Figure 2: Loop-up Table for decoder 

2.2.6 LEDs 
LEDs will display which note that current player is playing. The note corresponds to the higher 
pitch (right hand) only. There are 12 different notes in one octave. Therefore, we need 12 LEDs. 
Seven of them are green color to represent normal notes, and the remaining 5 of them are red 
color to represent sharp and flat notes. The required voltage for each LED to light up is 3 volts. 
 

Requirement Verification 

1. They have to light up and be at least visible 
3 +/- 5% meters away 

1. This can be tested by lighting up the LED 
and observe its intensity from that distance 
for visibility. 

 
 
2.2.7 Algorithm for the microcontroller 
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Figure 3: Algorithm of microcontroller  
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The flowchart describes the algorithm which controls LEDs and frequency of the output square 
wave. The output for LEDs will be encoded in radix 2. Since we have 12 LEDs, the decoder will 
take 4-bit wide selector because it has to be power of 2 which 2^4 = 16 is enough for 12 distinct 
LEDs. We chose to have the index of LEDs from 0 to 11, so the output to decoder is as follows: 
·         output[3:0] = 0000 for lighting up the first LED (C) 
·         output[3:0] = 0001 for lighting up the second LED (C# / Db) 
·         output[3:0] = 0010 for lighting up the third LED (D) 
·         output[3:0] = 0011 for lighting up the fourth LED (D# / Eb) 
·         output[3:0] = 0100 for lighting up the fifth LED (E) 
·         output[3:0] = 0101 for lighting up the sixth LED (F) 
·         output[3:0] = 0110 for lighting up the seventh LED (F# / Gb) 
·         output[3:0] = 0111 for lighting up the eighth LED (G) 
·         output[3:0] = 1000 for lighting up the ninth LED (G# / Ab) 
·         output[3:0] = 1001 for lighting up the tenth LED (A) 
·         output[3:0] = 1010 for lighting up the eleventh LED (A# / Bb) 
·         output[3:0] = 1011 for lighting up the last LED (B) 
 
It will first get detected value from the first sensor (for the right hand), then it will go to 
switch-case statement to choose which LED to light up. Then it will determine how long to wait 
until switch the state (high to low/low to high) of the square wave output for the higher pitch. 
This will alter frequency of the output wave. After it is done with the first sensor, it does the 
same with the other sensor (for left hand) by getting a value from the sensor. After that, it 
determines how long it should wait until it switch the output state (for left hand) in order to alter 
the frequency of the square wave that come from the left hand. After that, it goes back to the first 
process (the first sensor) again. 
 
2.2.8 Schematic 
 
 

10 



 

 
 

Figure 4: Overall schematic 
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Figure 5: Waveform generator and bandpass filter (Waveform Module) 
 

 
 

Figure 6: Sensor and ADC (Sensor Module) 
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Figure 7: Microcontroller (Control Module) 

 

 
Figure 8: Decoder and LEDs (LED Module) 

 

 
Figure 9: Voltage regulator (Power Module) 

 
2.3 Tolerance Analysis 
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An important aspect of the infrared sensors to explore is the sensitivity of the sensors. The total 
voltage range of the sensor output is: 
 
0.3-(-0.3) = 0.6 volts 
 
This means that to accurately represent 12 bits, the sensors must be able to produce 4096 distinct 
voltages, which requires quite a bit of precision. This means that in the 0.6 volts range, the 
difference in voltage between two consecutive unique distance readings is: 
 
0.6/4096 =  0.000146484375 volts = 0.14648 mvolts 
 
An important aspect of the analog to digital converters to explore is the amount of individual 
frequencies that can be played with 12 bits. With 12 bits of information, 4096 unique frequencies 
can be represented. One octave has 12 different notes (seen below), so to play every single note 
requires representing at least 24 distinct pieces of information. However, the goal is to transition 
from note to note as smoothly as possible, which means adding semitones. The goal then 
becomes to represent as many notes as possible. This is essentially done by adding enough 
semitones that the human ear can’t hear a difference between the different states. This can be 
done by first choosing the number of bits used to represent distinct distances and therefore 
distinct frequencies. MIDI uses  12 bit information since anything below 12 bits would make it 
difficult to create smooth transitions between notes as they rise and fall. Below are calculations 
for finding distinct semitones with 12 bits of information and 8 bits of information respectively. 
 
Equation 1:  Resolution Calculation 
 
          Bit representation / 24 - 2 = resolution 
 
          4095/24 - 2 ~ 167             With 12 bits representation 
          256/24 - 2 ~ 9                   With 8 bits representation 
 
The -2 subtracts the two real tones.  
 
Equation 2:  Find frequency range 
 
           Frequency range = Fmax - Fmin 
 
           523.25 - 130.81 = 392.44 Hz  
           261.63 - 65.41 = 196.22 Hz.  
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Notice that frequency span of the higher octaves is twice that of the lower octaves, yet they both 
represent the exact same amount of notes. The reason for this is simply due to the way human 
perceive hearing. As you can see, the frequency range for the higher frequencies is twice that of 
the lower frequencies, which is characteristic of the logarithmic scale that models human 
hearing. The way in which humans perceive hearing is modeled by the following equation: 
 
Equation 3: Volume amplitude respect to voltage 
 

 
 
This will be important to model for our algorithm. NdB is the volume amplitude in decibels. V2 
is the voltage amplitude of the output while V1 is a reference voltage many of the components 
must be set to. 
 
One important aspect of the microcontroller is that both outputs must be in the form of clean, 
uniform square wave such as in figure 10.  
 

 
Figure 10: Middle C note (261.63 Hz)  square wave 

 
However, by the end of ECE 395,  the output of the microcontroller was something completely 
different. Figure 11 is an oscilloscope image of the main output of the microcontroller from 
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previous tests. Although the image below shows a function with a uniform period able of holding 
a pitch. It is far from the uniform square wave desired from the microcontroller output. This was 
most likely due to erroneous values from incorrectly implementing UART protocol for the 
distance readings. UART protocol requires a start bit and a stop bit. Since the old algorithm 
never properly defined where the stop and start bits were located, the resulting output was the 
distorted image seen in figure 11. 
 

 
Figure 11: G sharp (103.83 Hz) distorted output from microcontroller 

 

3 Cost and Schedule 
 
3.1.1 Labor 
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The fixed cost for development would be ($35/hour) with (10 hours/week) for each member on 
the team. There are three people on the team working over the course of the semester mainly (13 
weeks)  
  
Equation 4: Labor Cost 

Labor  = 3 people * $35/hour * 10 hours/week * 13 weeks * 2.5 = $34,125 
  
3.1.2 Parts 

Quantity Part Cost of single unit Cost of single in 
bulk  (100) 

2 Infrared Sensors (Sharp 
GP2Y0A21YK0F) 

$9.95 $6.95 

2 A/D converter (TLC2543C) $9.87 $7.37 

1 Microcontroller 
(LPC1114FN28/128) 

$27.89 $10.00 

1 Decoder (generic 4 to 16) $3.25 $2.75 

12 LEDS (green, red) $0.15 $0.12 

3 Toggle switches (generic) $1.55 $1.15 

2 Waveform Generator 
(MAX038) 

$15 $11.00 

2 Filter (Resistors, capacitor) $1.00 $0.60 

1 Foot Pedal (generic) $62.00 $47.00 

1 Audio output (generic) $2.27 $1.59 

1 Voltage Regulator (UA78M33) $0.55 $0.30 

1 Power transformer (Generic) $6.00 $5.50 

1 PCBs (Custom print) $2.00 $1.50 

  Total $182.05 $125.37 

 Figure 12: Table of Parts costs 

17 



 

 
We estimated that the cost of the parts and manufacturing the prototype would be $200.00 each. 
During the development phase we will be creating at least ten prototypes. 
 
Equation 5: Cost of Parts 

Cost of Parts = 10 prototype *200/prototype 
 

Equation 6: Grand Total  
Grand Total = Labor + Cost of Parts  

  
Therefore the total development cost will be estimated to $36,125. 
  
3.2 Schedule 

Week Phong Juan Chawakorn 

1/30/2017 
 

Develop the basic 
block diagram 

Prepare the 
project approval 

Edit the project 
approval 

2/6/2017 
 

Design the LED 
Display and 

Control Module 

Design the Sensor 
Module and 

Power Module 

Design the 
Waveform Module 

2/13/2017  Redesign block 
diagram 

Work on foot 
pedal design 

Prepare the Mock 
Design 

2/20/2017  Calculate cost and 
create schedule 

Create circuit 
schematics 

Select specific 
components to use 

2/27/2017  Prepare the Design 
Review 

Assemble the first 
prototype 

Purchase 
components needed 

3/6/2017 Create a lookup 
table for LED 

display 

Test the sensors 
correlation to 

distance 

Implement 
algorithm for 

microcontroller 

3/13/2017 Test LED Display 
lighting for each 

note 

Test the foot 
pedal sound 

modifier 

Develop the PCB for 
circuit 

3/27/2017 Fix any bugs in Create prototype Test and perform 
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algorithm for LED 
Display. 

version 2 first revision on 
PCB 

4/3/2017 Perform safety test 
on prototype 

Run test on 
prototype version 

2 

Perform final 
revision and test on 

PCB 

4/10/2017 Modify prototype 
to obey safety test 

Create final 
prototype 

Test that a note is 
being played correct 

4/17/2017 Prepare for Mock 
demo 

Run test on final 
prototype 

Test that two notes 
can be played at the 

same time. 

4/24/2017 Prepare final 
presentation 

Design prototype 
case 

Record a sample 
made by prototype 

5/1/2017 Begin Final Report Combine 
prototype and 
case to finalize 

product 

Edit Final Report 

  
Figure 13: Schedule of each member table 

 

4 Discussion of Ethics and Safety 
 
Safety is a very important factor in our implementation of the project. Throughout the 
development of our project, one safety risk that we will pay close attention to is the monitoring 
of our power source(s). It is important that as we develop our project we keep in check what 
voltages are going through each component to make sure that it does not overload the capacity 
that could result in possibly frying it or starting a fire. Beyond the development phase, we will 
apply a safety measure to the power module with a fuse to ensure that the current flowing 
through it is the correct amount to prevent the component from being overloaded and circuit 
being shorted. 
  
One possible ethical issue that could arise is that we might not be aware of our product not being 
able to produce all the notes/pitches that we claim. According to IEEE Code of Ethics code 3, it 
is important that we are honest and realistic in stating claims based on the data that is available to 
us [1]. Therefore, to ensure that our design address that issue, we will be using a music tuner to 
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test each pitch. We will check that all the range of sound that we claim can be achieved by our 
instrument. 
  
We as a group envision to follow the IEEE Code of Ethics. As stated in IEEE Code of Ethics 
code 1, we will accept all responsibilities in decisions that we make to ensure the well-being and 
safety of the public [1]. We want our product to be as safe as possible to any user by applying 
safety measure listed above. Furthermore, we will be seeking feedback from many different 
people such as friends, families, instructors, and teaching instructors. As an engineer, under the 
guidance of IEEE Code of Ethics code 7, we will accept all the criticism of the product, 
acknowledge the errors, and correct them [1]. Our goal is to meet the expectation that others 
have for our product and to make it as flawless as possible. Although our product will initially be 
far from perfect, but with every mistake corrected we will be one step closer to reaching that 
goal. 
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