Quadcopter Delivery Verification

ECE 445 SP2016

TA: Luke Wendt
Team Members: Sachin Weerasooriya - Electrical Engineering
Raymond Hoagland - Computer Engineering
Rahul Joshi - Computer Engineering

Final Report for ECE 445, Senior Design, Spring 2016
May 4, 2016
Project No. 22

Abstract

Quadcopter Delivery Verification is a system, designed to be used in conjunction with current drone
delivery models. This system uses a combination of landing pad encryption and threat detection schemes
to provide additional robustness and security for the drone delivery process while remaining relatively
inexpensive to implement. The landing pad is encrypted to provide authentication for the intended
recipient, while a messaging server and a threat detection module provide a two-pronged approach to
keeping packages safe from potential harm.

Table of Contents

L0 INtroduCtion. i e e e e e 4
1.1 Statement Of PUIPOSE.uii ittt et et ettt e e 4
L o) 115 4

0 0 T 1 Pt 4
L & T 11 Y 4
1.3 USefulness Of PrOjJeCt.uuitiiit ittt et e et e et ae e 4
L 0 2 U Tod I - ¥ 1 5

| D o) 5

2 23 U Tod o I 1Y w1 o 1) 5
B 0 1) 2 12 T 0) T 5
2.1.2 LogiteCh CO20 CameTa.ouetintiett ettt ettt et e et e et e e et e e eeeae e naeenees 5
2.1.3 Odroid C1+ Single Board COmMPULET........ovtiieiie ittt 6
2.1.4 OpenCV ALGOTItRIMS. ... oottt e e e e 7
2.1.5 Google Cloud MesSaging SeIVET........uutnuie ettt e et e et et eee e neeeaeanans 9
2.1.6 Android Lollipop Phone App......oouuiie it e e e e 9
2.1.7 Passive INfrared SensSOr.uiiui ittt e 10
2.1.8 MICTOWAVE IMOtION SEMSOT.ttt ettt et et et e et et e et e et et e e aaeeeeenans 11
2.1.9 PCB/Perfboard DESIGN.uiuut ettt et e e et e e e e 14
2.1.10 Threat Detection SYSteIM.uuuut ittt et e et ee e 15

3.0 Verification. e e e 15
3.1 Testing PrOCEAUIE.ttt e e e e et et e e e e 15
3.2 POWEr MOUIC.t e et e e 15
TR o 1) 1 1) Ot 16
3.4 MICTOWAVE MOtION SISO ettt e et ettt et e et ettt et e et et e e e e e et e et e e e aaeeeeeneens 16
3.5 Analog to Digital CoOnVETtOT.ttt ettt e et et e e e et et e e e ae et e eee e aaans 19
T S0 5573 s Lt 19
3.7 M A Y PrOXY ettt e 20
3.8 ANAroid PhOme AP ... ettt e e 21
3.9 PCB/PerfbOard.t e e 22
3.10 Threat DeteCtion SCIIPL.ueuet ettt e e et e e et e e e et e e e e ate e anees 22

Bu0 COSES. ..o 23
L 3 1 23
T Yo Yo) 24
EZ 0 T o Y 24

B0 CoMCIUSION.o 24

5.1 ACCOMPLISHIMENLS. e e e e 24
BTN B 3173 T 13 <] 25
5.3 Ethical Considerations.oueiutiintiit ettt et et e e et et e e 25
5.4 Delays and CompliCations.uiuuintt ittt et e et et e e et et e 26
S5 FUrther WOrK. ..o 27
0.0 ReFeIemCes.ottt e e e e 29
Appendix A: Requirements and Verifications Table.....................c.. i 32
Appendix B: Source Code...........ooooiiiiii i 38

1.0 Introduction

1.1 Statement of Purpose:

Traditionally upon ordering, recipients may choose to either have packages dropped off at a doorstep or
request signature confirmation upon delivery. Services like Amazon PrimeAir look to speed up delivery
times through the use of drones in the shipping process. Their current delivery model involves first
attaching a package to the drone, taking off, and converting to a plane once a previously set altitude is
reached. The drone then flies to the vicinity of the landing pad and converts back to a drone in
preparation for landing on a marker, laid out by the recipient. The drone then deposits the package and
returns to the factory for its next shipment. We believe this delivery model inherently contains a major
flaw; in the event that something valuable is shipped, it is desirable to have a mechanism for confirming
that someone is available to pickup the package immediately. Our project aims to solve this by creating a
procedure that will allow a drone to wait for recipient verification before the package is delivered.

1.2 Objectives

1.2.1 Goals:

The goals of this project are threefold: design an embedded system on a drone which provides a
mechanism for authenticated delivery, determine the intended landing location with the assumption that
the drone is already in the proximity of the user’s location, and have the drone wait at this location while
avoiding potential threats to the package until user confirmation is received or a timeout period is
exceeded.

1.2.2 Benefits:
This system aims to bolster the speed and efficiency of drone package delivery while maintaining the high
standard of security allowed by standard delivery procedures requiring recipient signatures.

1.3 Usefulness of Project

Quadcopter Delivery Verification’s intended use case is in tandem with an existing drone delivery model
that leverages global position system (GPS) coordinates to maneuver the drone to the vicinity of the
recipient’s location. At this stage in the delivery process, Quadcopter Delivery Verification will become
active, helping to guide the drone to the user-specific landing pad and successfully deliver the package.
This will allow drones to deliver to more expensive and delicate items, which require a more secure
delivery method.

1.4 Block Diagram
Figure 1 depicts an overview of the system and the interactions between the modules of this project.

Camera ‘ Battery Pack

l J OpenCV Algorithms
ODROID-C1+

Pixhawk

& Dongle
I
Analog to Digital
Converter Legend
Power >
Signal —
. 4 v
On Drone
PIR Sensor Doppler Sonar Phone App
Off Drone

Figure 1: Block Diagram

2.0 Design
2.1 Block Descriptions

2.1.1 3DR Iris+ Drone:

This is the main component of the project which all other components are mounted to. The project
leverages these components in addition to the onboard Pixhawk microcontroller to navigate the drone to
the designated landing pad and deliver the package. When purchasing a drone, we had two major
stipulations. The drone needed to use the Pixhawk microcontroller for flight control and have a large
enough payload to carry our additional components. As the Pixhawk is relatively new, we decided to use
the Iris+, which used the Pixhawk and is built by the same company that manufactured the Pixhawk
controller itself.

2.1.2 Logitech C920 Camera:

The camera captures image frames, which are analyzed in OpenCV to inform decisions about the drones
actions. Research showed that the majority of recent drone projects employed this camera due to its rich
feature support in OpenCV and relatively inexpensive price. Other cameras supporting the necessary
options for OpenCV; however, could easily be incorporated without changing the overall design of the
system.

In order to capture adequate images in a variety of lighting conditions, we experimented with different
values for the camera’s brightness and exposure. For the purposes of our project, we consider standard
lighting to be three fluorescent lights at approximately nine feet off the ground shining on our test-landing
pad. In this lighting, we found that an exposure rate of 60% and brightness of 20% provided image
frames with enough detail to be successfully decoded while avoiding oversaturation. Due to the potential
for wing to cause the drone to slightly drift while hovering above the landing pad, we performed a

Gaussian Blur on the captured image, which allowed us to sharpen the image and remove small amounts
of blur caused by the camera movement. We experimentally determined that a two second delay between
image frames was ideal for our project, as per our requirements, each captured frame takes a maximum of
four seconds to process using our decoding algorithm. This delay thus helps to reduce the instances
where we process the same frame more than once. Additionally, because we expect the drone to be
drifting quite slowly, this sampling rate is high enough to provide several frames with which we can
attempt to successfully decode the landing pad. Finally, to provide a standard image size for all of the
processing algorithms and remove any negative scaling effects, we set the camera to capture frames at
512x512 pixels(px).

2.1.3 Odroid C1+ Single Board Computer (SBC):

This is used as the main processing unit for the software portion of this project. The C1+ runs a
Extensible Messaging and Presence Protocol (XMPP) server that sends a notification through Google
Cloud Messaging (GCM) to the recipient’s Android phone app to indicate the drone’s arrival. The server
also receives confirmation when the recipient is ready to pick up the package, prompting the drone to
release the package and depart. Additionally the C1+ controls a sub-process to periodically capture image
frames, a sub-process that analyzes the captured frames in OpenCV, and a MAVProxy shell used for
guiding the drone. Finally, the C1+ runs a sub-process which analyzes the output of the threat detection
system through the use of General-Purpose Input/Output (GPIO) pins and the onboard Analog Digital
Converters (ADC). The C1+’s increased processing power, onboard ADC’s, and compact design made it
an immediate choice for this project; however, other similar SBCs could be used along with offboard
ADCs, with the tradeoff being necessary integration of the two.

Drone takes off

o v

G

Landing Pad Detected?

No

Send Request
> for Confirmation

Request
confirmed by
User?

Yes

Move Towards

Correct Landing Pad?

No

Landing Pad

Yes

Drone Lands

Safety
Mechanism and
Server Enabled

Has threat been

G

w
&
2
w
5
@

Jy—
= -

No

Intermediate

No
Has 2 minutes State
[l . End State
No
~» Thread
Yes
—» State
Transition

Figure 2: ODroid Logic FlowChart

2.1.4 OpenCV Algorithms:
The OpenCV algorithms are in charge of processing images to first center the drone above the landing
pad and then crop out, normalize, and decode the landing pad.

We use base four to represent the result of a SHA-1 encoding performed on the user’s unique identifier
such as an email address when encoding the landing pad. Alternative approaches include different
encoding schemes such as SHA-3 which is newer and thus less widely supported and binary encoding

which has higher information density and thus may require further scaling of the landing pad in order to
meet the same height requirements for decoding.

In order to center the landing pad in the capture image frame, we make use of the purple corners and
center of the landing pad by applying Hue-Saturation-Value (HSV) filtering to find all purple pixels in the
captured image and calculate the average x and y coordinates. We use an experimentally chosen 200x200
px dead zone in the center of our image (512x512 px) to represent the acceptable centered position.

Once the landing pad is in the center of the captured image, we crop it out so that only the landing pad
remains. To do this, we find the outer white and black borders which identify the edges of the landing
pad. These borders are represented by a pair of contours, or regions which consist of the same color, that
have an area ratio between .85 and 2.0, where we expect the true ratio to be 1.2. We then crop around
these contours, leaving the landing pad bordered by a single black rectangle. To make sure the outer
black border is recognized as a contour, we create an outer 5x5 px white border surrounding it. We then
rotate the contour and landing pad combination in increments of 3° using a rotation matrix (Figure 3),

while recording the minimum ratio of areas between the contour itself and a bounding rectangle, which
contains all points of the contour. If the minimum ratio falls below 1.2, where the ratio for a perfect 90°
alignment is exactly 1, we finish this process by performing HSV filtering to locate the top left, top right,
bottom left, and bottom right purple coordinates in the image and resizing the image to our standard size.

M = [cos@ —sin()l
sinf cos@

Figure 3: Rotation Matrix [5]

Now that the landing pad has been isolated, we apply normalization to the image to account for any non-
ideal lighting conditions. We use a combination of Contrast Limited Adaptive Histogram Equalization
(CLAHE) and Red Green Blue (RGB) normalization techniques. For each pixel in the image, RGB
normalization computes the average of the three color channels to more evenly distribute any saturation in
the image (Figure 4). Following normalization, we decode the remaining image (Figures 5 and 6).

Figure 4: RGB Normalization [11] Figure 5: Original Image Figure g Normalized Image

When decoding the image we use HSV filtering to sequentially look for each of the encoding colors
(Figure 7). For each color, we examine matching pixel locations in the image and map them to
corresponding encoded blocks in the original image. To remain tolerant to minor rotation inaccuracies or
other complications, we assign ties to the expected color. If two pixels within the same encoded block
representing differing colors are examined, one of which corresponds to the block’s color in the original
image (Figure 5) and one which does not, the result is recorded as the expected color (Figure 8). During
this phase, we consider all four possible 90° rotations to determine correct alignment. We then compare
each of the four final results with the expected result using direct string similarity and record the best
result. If the highest result is above the threshold of 0.80, we consider the landing pad to be successfully
verified, and the drone begins landing.

Figure 7: HSV Filtered Image Figure 8: Final Reconstructed Image

2.1.5 Google Cloud Messaging (GCM) Server:

The GCM server is in charge of initiating a request for confirmation and waiting for the recipient’s
response to indicate that the drone should deliver the package (Figure 9). Alternatives to GCM exist, but
its’ ease of use and wide support made it an ideal candidate for this part of our project.

Odroid Phone

Send t)
Python lc?r;or:;?r‘:\:‘;cn Android App
XMPP Google Cloud +—] |

Server Messaging

\ Server ~
Send confirmatip: |

Disable Safety from User B
Mechanism

GCM Client

/

MavProxy

"
TG
==
-

Phone
Hotspot for
Odroid

Figure 9: GCM Server Overview

2.1.6 Android Lollipop Phone App:

The phone app runs on the recipient’s smartphone and receives the request for confirmation notification
when the drone has successfully decoded the landing pad (Figure 10). When this notification is received,
the confirm button becomes enabled, allowing the user to approve the delivery (Figure 11). At the time of
the project’s development, Android was easier to quickly develop on and was suitable for this project,
however the app could be extended to iOS without changing the overall design.

Figure 10: App (Disabled) Figure 11: App (Enabled)

2.1.7 Passive Infrared Sensor (PIR) :
The PIR module is a device that looks for a change in the ambient infrared in the environment in order to
detect movement. Figure 12 gives a visual representation of how the device works.

PINS 1.2 ON A HORIZONTAL PLANE

\ FRESNEL LENS

“l/ DETECTING AREA

HEAT SOURCE MOVEMENT
/

Figure 12: PIR Module Operation

OUTPUT SIGNAL

Two strips of infrared (IR) sensitive material work in unison to form a differential. In a static
environment, both strips should see the same amount of IR, resulting in a low voltage. When a warm
body, such as a human, enters the field of view, initially only one strip will detect the IR which will cause
a positive spike. Eventually, both strips should see the warm body, and finally only the other strip will see
the signal, resulting in a negative spike. This device outputs a digital low when the differential is close to
equal and a high value once this differential breaks a certain value.

As a result, we can use the output signal immediately without any amplification or filtering. The field of
view of each sensor is approximately 90°. We placed six sensors with even spacing around the drone so

10

that no dead spots exist. If any of the PIR sensors are observed as digital high, we check the output from
the Doppler on the same side of the drone. If both values are digital high within one second of one
another a threat is detected. A basic schematic showing single connected PIR sensor is shown in Figure
13.

ODROID
Digital /O
5V PIRSensor |
RREEEEARARER
GND oc Gnd out
|

Figure 13: PIR Sensor Schematic

We use the source voltage and ground from the specially assigned 5V and GND pins on the ODroid C1+,
which will be onboard the drone and is in charge of controlling the drone. We then feed the sensor output
into one of the GPIO pins on the ODroid and compare this output using C to the output of the
corresponding Doppler in order to determine whether there is a threat or not.

2.1.8 Microwave Motion Sensor:

The microwave motion sensor emits a high frequency signal at 10.525 GHz. Anytime the signal hits a
moving object, the reflected signal is frequency shifted by a value that is linearly proportional to the speed
of the object. This relationship can be seen below in Equation 1.

Fi .
c
Equation 1: Doppler Shift Frequency

Note that in this equation F4 represents the shifted Doppler frequency, V represents the speed the object is
travelling at, F, represents the transmit frequency (10.525 GHz), ¢ represents the speed of light (3.0 x 10°
m/s) and theta represents the angle between the moving target and axis of the module. It should also be
noted that the amplitude of this shifted signal is in the microvolt range so amplification is vital. As the
doppler has a wider field of view and longer sensing range than the PIR sensor, only two sensors should
be necessary to cover the entire 360°.

Using Equation 1, we can determine what Doppler shifts to expect. As it is conceivable that a thief may
try to approach the drone very slowly to fool the system, we can assume a situation where V is very small
to be an important test case. If we take V to be .2 m/s and theta to be 45 degrees, we can see in Equation 2
that the corresponding shift is 4.8 Hz.

11

10.520GH 2 i)
—— cos(4b) = 4.8Hz
3% 10°m /s

Equation 2: Doppler Shift Frequency Calculation 1

Fyg=2%.2(m/s))

As aresult, for this project we want to block frequencies under this threshold so as to avoid amplifying
DC signals. The app note for our chosen Doppler, the HB100 [25], uses a first order resistor-capacitor
circuit (RC filter) with a capacitor of 4.7uF and a 10K ohm resistor. We can see from Equation 3 below
that the cutoff frequency for this low pass filter is 3.39 Hz.
Festoff = l — = _l —— = 3.39H:z
Y 2% mx R+ C 0 2% w47+ 1075 % 104
Equation 3: Cutoff Frequency Calculation 1

This result is close to our desired cutoff in Equation 2, so we did not modify the resistor and capacitor
values.

Our next step was to determine the appropriate gain and filter for the Doppler. In order to establish an
upper band limit of frequencies to operate with, we again reference Equation 1. Because we expect our
primary threats to consist of humans and small pets, we can infer that we can establish a maximum speed
that our design can deal with. By assuming that the maximum speed a human can move at is 10 m/s, we
can see in Equation 4 that our upper cutoff frequency should be 701Hz.

 10525GHz .
Fy=2%10(m/s) % — 7% s(0) = T01H >z
0T 3% 10%m/s)

Equation 4: Doppler Shift Frequency Calculation 1

We then chose R and C values to achieve this cutoff. In order to keep this project inexpensive, we aimed
to maximize our resistance value while minimizing our capacitance value. The App sheet used a 2.2 pF
capacitor along with a 1M ohm resistor. Keeping the 1M ohm resistor, we can see that a 225 pF capacitor
is ideal for our needs, as shown in Equation 5.

1 1 e
Feutoff = — = —— — T07.36Hz
4 2%« T*x R*xC 2% 7 %225 % 10712 % 106

Equation 5: Cutoff Frequency Calculation 2

The app note uses a gain that aims to accurately detect human movement. Because we did not change the
resistor in our RC filter, the gain after exiting the two-stage opamp is maintained. As a result, we carried
over the rest of the circuit unchanged from the app sheet. The app sheet schematic is shown below in
Figure 14.

12

+5V

%10(%

+
— 100K

100uF —

+5v % 330K

> pr—
v) +5V
+5Y
O.TuF 470F

.|||_1

MOTION ¢ 4.7uF B.2K Ty
SENSOR L — | AN Pre-Amp
+ L Output
oND 12K = - l
im
i = 2.2nF — AN =
— { } 2.2nF
| L
4.7ufF 10K im 11
' AN ANV—

ik

Figure 14: HB100 Pre-Amplifier Circuit

Figure 15 shows the modified circuit design used in our project. Our drone uses two dopplers, which
means two copies of the same amplifier circuit are needed, but the second copy is not shown for brevity.

Finally, we send the amplified output signals to a 30-pin header. The output from the second stage of the
amplifier is sent through a voltage divider to ensure that the output never exceeds 1.8V, the maximum
permissible input value allowed by the ADCs on the ODroid. We then take the amplified signal from the
PCB and deliver it to one of the two ADCs found on the ODroid. This signal once digitized undergoes a
similar process as the PIR sensor output. However, in this case more logic must be implemented in
software because the output signal is not restricted to a digital high or low. Depending on which side of a
threshold the output voltage falls, we determine whether the signal should be treated as digital high or
low. We explain how these thresholds are established in Section 2.2.10.

13

YY)
ey

W

Y

AR

P4 rYrT)
vily Vv

:
u
|
|
L‘ ’H H H V [T

Figure 15: Designed Pre-Amplifier Circuit

2.1.9 PCB/Perfboard Design
Despite going through two revisions for the PCB, due to unidentified complications, we completed the
circuit on perfboard for demo purposes. Both the PCB and perfboard are shown below (Figure 16).

14

Figure 16: PCB Layout/ Perfboard

2.1.10 Threat Detection System

As we have two methods of detecting motion, we combine them to produce a more accurate output with
fewer false positives and false negatives. We accomplish this by placing sensors around the drone; in
particular, six PIR sensors and two dopplers. We positioned a PIR sensor on the front and back of the
drone along with two more each on the left and right side of the drone. In addition, there is a single
doppler each on the left and right side.

We then designed a script in order to monitor the output of both types of sensors. For the purposes of the
demo, we only fitted and monitored one side of the drone with sensors in order to reduce noise from other
groups or other sources in the lab. We monitored both PIR sensors and the doppler on the side of the
drone. We defined a threat as a situation in which both sensors output a digital high within the same
second of each other. We used an infinite loop to monitor the GPIO pins which handled the PIR sensor
inputs and monitored the doppler output; if the doppler output exceeded 1.6V, it was considered “high”.

3.0 Verification

3.1 Testing Procedure

When ordering the drone for our project we encountered significant delays and thus chose to verify our
components in a modular fashion. This assisted us in two major ways, first it allowed us to maximize the
number of points earned during the demo and second it facilitated an easier method for testing our design
both prior to and following the integration of the various modules. A more detailed description of the
requirements and verifications used for this project is located in Appendix A.

3.2 Power Module

The key requirement of the power module was that the device supply the ODroid with the 5V, 2A biasing
necessary for the device to remain powered for at least the length of the drone’s maximum battery
lifetime of twenty-five minutes. For validation, we powered the ODroid with all peripheral sensors

15

attached via battery pack and stopped once the test reached the one hour mark as it became clear that the
supply was more than sufficient for our purposes.

3.3 PIR Sensor

Because the PIR sensor didn’t require any pre-amplification or filtering, the testing procedure for the
device was fairly straightforward. We connected the Vin and ground (GND) pins to the 5V and GND pins
respectively on an Arduino Uno board. I then passed the digital output through a grounded resistor in
series with an light-emitting diode (LED). We then approached the sensor to test the claimed seven meter
range.

We immediately noticed an issue wherein the sensor would output a high voltage and stay high even
without any movement. In order to rectify this, we adjusted one of the device knobs which tuned how
long the sensor output remained digital high after seeing motion. After reducing the sensor delay, we
observed the expected behavior. We then tested the range of the sensor by first evaluating at which
distance the sensor could first detect our movement. At 20 feet away, the sensor immediately detected our
movement when coming into the sensor’s field of view, which we observed to be approximately 90
degrees, as claimed.

3.4 Microwave Motion Sensor

To verify this module, we first assembled the amplifier circuit on a breadboard and wired the doppler to
the amplifier circuit. We then observed the output signal to determine whether it had a constant output
signal along with oscillations as motion is detected. Once we confirmed that the circuit worked, we
proceeded to assemble the PCB. We then attached the Doppler to the PCB to ensure the output emulated
the breadboard circuit’s results.

After first connecting the doppler to the breadboarded circuit, we observed a steady 2.5V output signal as
expected but no oscillations in response to movement. Because the active filtering circuit was largely
borrowed from the HB100 application sheet, we surmised that it was likely that the circuit itself was
correct and that the error was a minor wiring issue or a faulty chip. We thus took the following steps to
debug.

We first removed the LM324 op amp from the circuit and put it on its own breadboard. At this point, we
connected the op amp as a voltage buffer in which the output is fed back into the negative terminal and
2.5V is fed into the positive terminal of the op amp. We observed the output voltage to be 2.5V as
expected. We repeated this process for the other op amp on the chip, which led to the same result. We
therefore ruled out the possibility of a faulty LM324 chip.

Our next step was to check that the expected gain from each opamp was achieved. We accomplished this
by removing the capacitors on the feedback loop of each op amp in order to remove the filtering. A 1mV
input was then fed into each stage individually and the expected output was observed from both cases.
From [22], we see that the gain for the first stage was expected to be 101 and the gain for the second
stage 122. Once we verified that this gain was correctly output, the capacitors were then re-connected and
the input to the op amp connected to a signal generator. At this point, we generated input signals at
various frequencies inside and outside the pass-band filter in order to determine whether the signal was

16

attenuated as expected. Figures 17, 18, and 19 show the output of these input signals with various
frequencies.

Figure 17: Output after a sinusoidal input of freq = 300 Hz (inside passband) with a peak voltage of 10

Undo Fast Debug Channels Acq Mode
Autoscale Displayed Normal

Figure 18: Output after a sinusoidal input of freq = 300 Hz with a peak voltage of 50 mV

Period(1): 760us ____ MDuty(T}: 50.0%]

Figure 19: Output after a sinusoidal input of = 1300 Hz (outisde of passband) with peak voltage of 50
mV

17

We observed that these plots were all correct which ruled out many potential errors. At this point, we re-
connected the two stages and re-connected the doppler to the circuit. This time, the output responded to
motion as anticipated. This was somewhat strange as we did not modify the actual circuit design. As a
result, we believe the circuit likely had a loose or misplaced connection which was rectified during the
testing of each stage.

After verifying the circuit functioned correctly, our next step was to verify that the range of the device
was as expected. To test this, a person stood over 20 feet away from the sensor and began walking
towards it. We then monitored the signal output on the oscilloscope to see the response. The signal was
observed to attenuate when a walking target was within 15 feet of the target. We repeated this at various
angles ranging from -90 to 90 degrees to the device and the sensor sensitivity remained relatively
unchanged. We then approached the sensor at sprinting speed (10mph) to see if the frequency of the
output signal was higher than the frequency of the output signal at walking speed (3mph). Figures 20 and
21 demonstrate the doppler output for both of these cases.

i/

o« —— T

Figure 20: Approaching Sensor at walking speed

18

Figure 21: Approaching sensor by sprinting

3.5 Analog to Digital Converter

We used the ADCs in our project to digitize the analog output from the doppler amplifier circuit. Because
we know what the doppler output looks like, the key step was to validate that the oscilloscope data
matched the data recorded by the ADC. We accomplished this by connecting the amplified ADC output
to both an oscilloscope and the ADC. We then stored, exported to Excel, and plotted the first 10,000
samples from the ADC. We compared the outputs of both to ensure a match (Figure 22).

0.95

0.9

0.85
——Seriesl

0.8

0.75

0.7

31

61

91
121
151
181
211
241
271
301
331
361
391
421
451
481
511
541
571

Figure 22: ADC Plot

3.6 OpenCV

The first requirement for the OpenCV algorithms specify that the decoding steps should complete with a
minimum speed of .25fps, or that each frame must be completely processed within 4 seconds. As
observed in our tests, the processing times ranged between 1.098s and 2.237s, well below our threshold of
4 seconds (Figure 23). Additionally, we found that the accuracy at which the landing pad could be
decoded ranged from 65% to 98% for our test images, which were captured in our standard lighting
conditions.

19

Running Test 0

Beginning Phase 0

Phase 0 Time: 1.69705080986
0.98

Phase 1 Time: 0.540163040161
Total Time: 2.2373008728
Running Test 1

Beginning Phase 0

Phase 0 Time: 1.76239490509
0.79

Phase 1 Time: 0.449064016342
Total Time: 2.21150994301
Running Test 2

Beginning Phase 0

Phase 0 Time: 0.688262939453
0.97

Phase 1 Time: 0.534878015518
Total Time: 1.22316813469

Figure 23: Example Decoding Times/Accuracy

The second verification for the OpenCV algorithms was to ensure that height calculations were 85% (+/-
5%) accurate. We observed that in our standard lighting conditions, the average accuracy was 97.35%
which was more than enough to meet our requirements (Figures 24 and 25).

Figure 24: Known height Figure 25: Estimated height (100% accuracy)

3.7 MAVProxy

We were able to verify that we could control the drone through MAVProxy using simulations (Figure 26).
Unfortunately, we were unable to verify that we could land the drone at the center of a landing pad due to
complications with the DF-13 connector. The lack of this connector prevented us from testing our
ODroid with the drone and thus from testing the MAVProxy code with the OpenCV algorithms.

20

I
Figure 26: MAVProxy SITL Simulation
3.8 Android Phone App

The main requirements for the phone app were that it work on a smartphone running Android Lollipop
and that messages sent between the app and the server take less than 1 minute.

The app worked successfully on both a Genymotion simulation and a LG G3 running Android Lollipop,
which can be seen above. (Figures 10 and 11).

We observed that both the request for confirmation and confirmation messages between the ODroid
server and the app took significantly less than one minute to complete, within the range of 0.121 and .304
seconds from the ODroid to the app, and between 1.519 and 2.503 seconds in the opposite direction

(Figures 27 and 28).
host-47-218:eced445 Rahul$ python gcm_server.py

I/System.out: Message received =

I/System.out: The communication took 0.12100005149841309 seconds Commnication took : 1.90556097031 seconds
I/System.out: in receiver confirm

I/System.out: Sent Message

I/System.out: Message received]

I/System.out: The communication took 0.3040001392364502 seconds Commnication : 2.35981488228 seconds
I/System.out: in receiver confirm

I/System.out: Sent Message

I/System.out: Message received s

I/System.out: The communication took 0.2909998893737793 seconds Commnication : 1.82484507561 seconds
I/System.out: in receiver confirm

I/System.out: Sent Message
I/System.out: Message received oent

1/System.out: The communication took 0.26600003242492676 seconds Commnication : 1.74072289467 seconds
I/System.out: in receiver confirm

I/System.out: Sent Message
I/System.out: Message received send

1/System.out: The communication took 0.2709999084472656 seconds Commnication : 2.50270390511 seconds
I/System.out: in receiver confirm

I/System.out: Sent Message
I/System.out: Message received

d
1/Systen.out: The comnunication took 0.27500000536743164 seconds e = 1.51919704883 seconds

I/System.out: in receiver confirm
I/System.out: Sent Message

Figure 27: ODroid to App Communication times Figure 28: App to Odroid Communication times

21

3.9 PCB/Perfboard

The verification process for the PCB design was a time-consuming and unsuccessful process. The first
PCB design contained several problems that we discovered during the verification process. For starters,
some traces on both the top and bottom layer led to the header pin, making it nearly impossible to solder
each pin on the component properly. We left the shunt capacitor between the 5V biasing voltage for the
Doppler floating as opposed to connected to the header pins, which the Doppler would be connected to.
The first revision also lacked the voltage divider at the output required to step down the 5V output to
1.8V. These corrections were remedied in the second revision, but we were still unable to get the second
PCB working as intended.

Once the second board was soldered, our first step was to connect the board to a 5V source and ground in
order to verify any short circuits were present in the circuit. We initially connected the circuit to a power
supply and as soon as both terminals were connected to the header pins of the circuit, the current draw
from the voltage source spiked to nearly 1A, which was clearly incorrect as the verified breadboard
circuit only drew 38mA. As a result, we determined that some of the components were soldered poorly,
causing a short circuit. Using the connection tool on a multimeter, we were able to find all the sources at
which the solder undesirably connected signals.

Once we found and fixed all of these short circuits, the PCB was re-connected to a power supply and this
time drew the expected 38mA. The Doppler was then connected to the PCB but the output did not match
the output from the breadboard circuit so we surmised that further errors must still exist. After probing
voltages at various parts in the circuit and comparing it to the probed voltage on the breadboard circuit,
we recognized that the voltage on the ground pin of the op amp was at OV on the breadboard as expected
but 4.4V on the PCB. We later determined that this occurred because the IC was mounted upside down;
as a result, 5V from the supply was connected to the ground pin of the IC and vice versa. When we
desoldered and placed the IC correctly, the probed voltage at the ground pin returned to OV as expected.

At this point, we re-connected the Doppler but again the output was incorrect. This time however, there
was a DC offset, a desired behavior. We observed this offset to be 3.3V; however, as opposed to the
expected .9V with the step down voltage divider in place. Despite several hours of debugging, we were
never able to determine the cause of the problem. As a result, we were forced to move our design to a
perfboard for demonstration purposes. We soldered the components onto the perfboard and when the
Doppler was connected, the output matched the output from the breadboard circuit with no need for
additional debugging.

3.10 Threat Detection Script

Because we knew both sensors worked correctly on their own, our validation for the threat detection
script remained fairly short and simple. In order to test that both inputs were being analyzed, we
disconnected the Doppler first, followed by both PIR sensors. During each of these tests, we wanted to
ensure that a threat was never detected because although the sensor that remained connected would
invariably go high if there was motion, a threat should never be detected because one type of sensor was
disconnected. This test worked. When both sensors were connected, the logic also worked as desired.

22

4.0 Costs

4.1 Parts

Item Cost
3DR Iris+ $599
Logitech C920 §70

PIR Motion Sensor (HC-SR501) (4)

$8.49 (833.96)

Force Sensor (FSR_0.5 DE2) (4)

$6.26 (825.04)

Minzi Battery Pack- 4600 mAh - 5V/2A $19.99

Odroid C1+ §£50

WiFi Dongle $0 - already own
100K Resistor (8) $0 - already own
IM Resistor (8) $0 - already own

8.2k Resistor (4)

$0 - already own

12k Resistor (4)

$0 - already own

10k Resistor (4)

$0 - already own

.1 uF Capacitor (4)

$0 - already own

100 uF Capacitor (8)

$0 - already own

225 pF Capacitor (12)

$0 - already own

LEDs (3)

$0 - already own

LM324 Opamp (3)

$1.63

23

30 Pin Header $6.80
Zip Ties (100) $7.99
Total $778.00

Table 1: Parts Costs

4.2 Labor

Name Hourly Rate Total hours invested Total
Raymond Hoagland $£50 200 $25000
Rahul Joshi $£50 200 $25000
Sachin Weerasooriya $£50 200 $25000
Total $75000
Table 2: Labor Costs

4.3 Total

Section Total

Labor $75000.00

Parts x 2 $1556.00

Total $76556.00

Table 3: Total Costs

5.0 Conclusion
5.1 Accomplishments

We achieved significant results in three main areas of the project: the OpenCV algorithms, threat
detection system, and user application and server.

In standard lighting conditions, we were able to decode test landing pads with 75% accuracy. In brighter

lighting conditions such as the outside environment, we originally saw very low accuracy similar to that
of an incorrect landing pad in the 30%-40% range, as the bright light saturated the channels of the image,

making it much harder to accurately apply HSV filtering. The addition of normalization techniques
helped to increase this accuracy, but we needed to adjust the expected colors to account for the lighting

24

saturation. Additionally, we were able to correctly determine in which direction to move the drone to
center the landing pad in the capture image frame with 65% accuracy.

For the threat detection system, we were able to develop a script that accurately determines if there is a
threat or not. If the PIR sensor output a digital high and the Doppler was determined to output high as
defined in the design stage within the same second of one another, a threat was detected. We were able to
successfully detect human threats approaching the drone before the threat was within 15 feet of the drone
as we originally intended. We also observed very few false positives and false negatives with this module.
This however was accomplished in controlled, low noise environments. Going forward, we would like to
test the system outdoors in noisier environments to ensure that the system is robust enough for real-world
applications.

For the Android app, the Python XMPP server on the ODroid was able to successfully communicate with
the Android app through the GCM client within one minute as per our requirements.

5.2 Uncertainties

Although we were able to achieve results in the three main areas of this project, there were some
uncertainties due to delays and complications with receiving the drone. The first major uncertainty was
that we were unable to verify that the MavProxy controls worked on the drone because the ODroid could
not be correctly plugged into the drone using the obscure DF-13 connector. The second major uncertainty
was our inability to verify that all of the modules could work together as a completely integrated system
due to these same delays.

5.3 Ethical Considerations
The project presented in this design review will be implemented with guidance and recognition of the
IEEE code of ethics.

1. To accept responsibility in making decisions consistent with the safety, health, and welfare of the
public, and to disclose promptly factors that might endanger the public or the environment

The goal of this project is to use a drone to locate a landing pad encoded using a unique identifier for a
customer and safely deliver a package using this drone. When working on this project we must focus on
safety of the customer and others around the drone. As we develop our system for the drone, anyone who
may be affected will be apprised of any safety concerns as they arise.

2. To avoid real or perceived conflicts of interest whenever possible, and to disclose them to affected
parties when they do exist

Due to the wholly academic nature of this project and the lack of sponsors or other motives, there is little
concern of conflicts of interest. That being said, if any such conflicts are encountered, all parties affected
by this project will be informed of these developments immediately.

3. To be honest and realistic in stating claims or estimates based on available data

The data that is collected during the course of this project will not be falsified in any manner and shall be
analyzed in strict accordance to the requirement and verification table provided (Appendix A).

25

4. To reject bribery in all its forms
As stated above, the academic nature of this project makes it unlikely that we will receive bribes,
however, all potential briberies will be summarily rejected.

5. To improve the understanding of technology; its appropriate application, and potential
consequences

The ethical and safety measures outlined in this paper will guide us in understanding the proper
applications and consequences of the use of the technologies employed in the project.

6. To maintain and improve our technical competence and to undertake technological tasks for
others only if qualified by training or experience, or after full disclosure of pertinent limitations
This team has a diverse set of skills and each member will contribute to the project based on his or her
experience. The two general areas which will be focused on during this project are software development
and circuit design.

7. To seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors,
and to credit properly the contributions of others

The advice from professors and TA’s will be taken into full account during the extent of this project. The
sources for each and every idea that is not wholly our own employed in the project will be properly cited.

8. To treat fairly all persons and to not engage in acts of discrimination based on race, religion,
gender, disability, age, national origin, sexual orientation, gender identity, or gender expression

All persons within the team will conduct themselves in a proper manner, both when interacting with other
team members and with other individuals.

9. To avoid injuring others, their property, reputation, or employment by false or malicious action
The team will take all necessary precautions by following the safety measures outlined below when
working on project testing and will not engage in any malicious actions towards others.

10. To assist colleagues and co-workers in their professional development and to support them in
following this code of ethics

This ethical statement is to help this team follow the IEEE code of ethics and also to help other teams also
uphold such a code.

5.4 Delays and Complications
The project was encumbered by several delays and complications that led to our inability to fully
complete certain aspects of the project.

The first delay was the delivery of the drone itself. We initially ordered a drone called FlyTrex Sky in
early February, but the company repeatedly delayed the delivery date until the week of March 28th, at
which point the company informed us of a major bug in the design which prevented them from being
ready to delivery the drone within the semester. At this point, we had to order a different drone that still
fulfilled the desired requirements of utilizing a Pixhawk controller and enough weight capacity to carry

26

the additional components used in our project. Due to this delay, we did not receive a working drone
until three weeks before the demo date.

We encountered a second complication when attempting to connect the ODroid to the Pixhawk
microcontroller. The Pixhawk uses the DF-13 connector. After purchasing the recommended cable, we
recognized that this cable required the use of a crimping tool so as to secure the cable. As an alternative,
we ordered another DF-13 cable, which was only available from Europe and Asia. Upon receiving this
second cable, we noticed that the cable contained ridges preventing it from fitting in the Pixhawk’s port.
This once again hindered our attempt to fully integrate our modules and test the project as a complete
system.

The third complication we faced was the sparsity of documentation available for MAVProxy. As
MAVProxy is a new project based on the MAVLink protocol, the documentation is incomplete and
provides few examples with which to begin developing code, relying on the assumption that the
programmer is already familiar with the MAVLink protocol. This limited information forced us to rely on
experimentation to determine what commands to use, such as for determining the current GPS location of
the drone.

The fourth complication was the lack of support for the Software in the Loop (SITL) simulation software
on the ODroid due to the system architecture of the ODroid. The developers specifically mentioned in
forum posts that they did not plan on support for this architecture. Due to this limitation, we could only
verify that the simulation worked on a laptop and not the ODroid itself, limiting the amount of testing we
could do on the integration of our threat detection system and OpenCV algorithms.

The final complication was glare on the landing pad. The presence of glare in the captured image
occasionally changed the color of the black border on the pad so much that it became impossible to detect
the desired contour pattern, as contour detection relies on a region which shares the same color. Without
recognizing the location of the nested contour, we were unable to crop the image and therefore unable to
accurately decode the image to verify its authenticity.

5.5 Further Work

In the future, there are many areas in the project we would like to explore and potentially improve. First
of all, we would like to get a working DF-13 connector and thus be able to test and debug our system as a
unified product and ensure it can fly as specified.

Secondly, we would like to explore the potential advantages of converting the landing pad to a base-2
color scheme and using a different corner detection algorithm, perhaps like that used to detect the corners
of QR codes. Based on feedback received during the demo and presentation, we believe using a base-2
encryption model in conjunction with techniques such as autocorrelation could help improve our overall
accuracy when attempting to decode the landing pad.

Thirdly, we believe implementing additional redundancy measures in our landing pad design could help

increase our overall accuracy even further by providing a method for error correction, while
simultaneously reducing the probability of false detections that could lead to safety concerns.

27

Fourthly, we believe that either reducing the effects of glare through further use of thresholding or
compensation using techniques like Hough lines could help improve the accuracy of our landing pad
decryption algorithms by ensuring the contours bordering the landing pad can be easily identified.

Lastly, we believe there is significant room for improvement in ensuring the robustness of our system in
terms of health and safety concerns. Supplementing our current computer vision algorithms with
additional methods of verifying that the landing pad truly exists to reduce the chance of false positives
during decryption could prove a large step in this direction. Implementing additional algorithms to ensure
that people or other obstacles are not present in the landing area as the drone begins to land could further
improve the safety of our device.

28

6.0 References

[1]"Introducing Copter." Copter. Ardupilot, n.d. Web. 29 Feb. 2016.
<http://copter.ardupilot.com/wiki/introduction/>.

[2]"Getting Started with Images9." OpenCV 3.0.0-dev Documentation. Opencv Dev Team, 10 Nov. 2014.

Web. 29 Feb. 2016. <http://docs.opencv.org/3.0-
beta/doc/py tutorials/py gui/py image display/py image display.html>.

[3]"How to Create and Decode a QR Code in Python Using Qrtools." Cerebro.toBlog(). Ralgozino, 13

June 2011. Web. 29 Feb. 2016. <https://ralgozino.wordpress.com/2011/06/13/how-to-create-and-decode-

a-qr-code-in-python-using-qrtools/>.

[4]Rosebrock, Adrian. "Find Distance from Camera to Object Using Python and OpenCV."
PylmageSearch. PylmageSearch, 19 Jan. 2015. Web. 29 Feb. 2016.

<http://www.pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-using-python-opencv/>.

[5]"OpenCV: Geometric Transformations of Images." OpenCV 3.0.0-dev Documentation. N.p., n.d. Web.

29 Feb. 2016.
<http://docs.opencv.org/3.1.0/da/d6e/tutorial py geometric transformations.html#gsc.tab=0>.

[6]"Finding Contours in Your Image9." OpenCV 2.4.12.0 Documentation. N.p., n.d. Web. 29 Feb. 2016.

<http://docs.opencv.org/2.4/doc/tutorials/imgproc/shapedescriptors/find contours/find contours.html>.

[7]1"MAVProxy"." MAVProxy — MAVProxy 1.4.38 Documentation. N.p., n.d. Web. 29 Feb. 2016.
<http://dronecode.github.io/MA VProxy/html/index.html>.

[8]"Communicating with Odroid via MAVLink." Ardupilot, n.d. Web. 29 Feb. 2016.
<http://dev.ardupilot.com/wiki/odroid-via-mavlink/>.

[9]"DroneKit Tutorial." Ardupilot, n.d. Web. 29 Feb. 2016. <http://dev.ardupilot.com/wiki/droneapi-
tutorial/>.

[10]Mackay, Randy. "Ardupilot-balloon-finder." GitHub. N.p., n.d. Web. 29 Feb. 2016.
<https://github.com/rmackay9/ardupilot-balloon-finder>.

[11]"Rg Chromaticity." Wikipedia. Wikimedia Foundation, n.d. Web. 15 Apr. 2016.
<https://en.wikipedia.org/wiki/Rg chromaticity>.

[12]"Adaptive Histogram Equalization." Wikipedia. Wikimedia Foundation, n.d. Web. 03 May 2016.
<https://en.wikipedia.org/wiki/Adaptive histogram equalization>.

[13]"OpenCV: Histograms - 2: Histogram Equalization." OpenCV: Histograms - 2.: Histogram
Equalization. N.p., n.d. Web. 03 May 2016.

29

<http://docs.opencv.org/3.1.0/d5/daf/tutorial py histogram equalization.html>.

[14]"How to Sharpen an Image in OpenCV?" - Stack Overflow. N.p., n.d. Web. 15 Apr. 2016.
<http://stackoverflow.com/questions/4993082/how-to-sharpen-an-image-in-opencv=>.

[15]"Python Gem." Gist. N.p., n.d. Web. 03 May 2016.
<https://gist.github.com/vietkute02/9680901>.

[16] "Google Cloud Messaging." GitHub. N.p., n.d. Web. 03 May 2016.
<https://github.com/codepath/android guides/wiki/Google-Cloud-Messaging>.

[17] "Simple Downstream Messaging." Google Developers. N.p., n.d. Web. 03 May 2016.
<https://developers.google.com/cloud-

messaging/downstream#sending topic_messages from the server>.

[18]"Send Upstream Messages." Google Developers. N.p., n.d. Web. 03 May 2016.
<https://developers.google.com/cloud-messaging/upstream>.

[19]"Simple Illumination Correction in Images OpenCV C++." - Stack Overflow. N.p., n.d. Web. 03 May
2016.
<http://stackoverflow.com/questions/24341114/simple-illumination-correction-in-images-opencv-c>.

[20]"Changing the Contrast and Brightness of an Image!9." Changing the Contrast and Brightness of an
Image! — OpenCV 2.4.13.0 Documentation. N.p., n.d. Web. 03 May 2016.
<http://docs.opencv.org/2.4/doc/tutorials/core/basic linear transform/basic linear transform.html>.

[21]"Non-blocking Read on a Subprocess.PIPE in Python." Jo. N.p., n.d. Web. 15 Apr. 2016.
<http://stackoverflow.com/questions/375427/non-blocking-read-on-a-subprocess-pipe-in-python>.

[22]"Limpkin's Blog." Making the Electronics for a $7 USD Doppler Motion Sensor -. N.p., n.d. Web. 04
May 2016.

<http://www .limpkin.fr/index.php?post/2013/08/09/Making-the-electronics-for-a-%247-USD-doppler-
motion-sensor>.

[23]"PIR Motion Sensor." How PIRs Work. N.p., n.d. Web. 04 May 2016.
<https://learn.adafruit.com/pir-passive-infrared-proximity-motion-sensor/how-pirs-work>.

[24]"10.525GHz Microwave Motion Sensor Module." (n.d.): n. pag. Web.
<http://www.limpkin.fr/public/HB100/HB100 Microwave Sensor Module Datasheet.pdf>.

[25]Module, X-Band Microwave Motion Sensor. MSAN-001 (n.d.): n. pag. Web.
<http://www.limpkin.fr/public/HB100/HB100 Microwave Sensor Application Note.pdf>.

30

[26]"Single-Supply Op Amp Selection Guide." Op Amps for Everyone (2003): n. pag. Web.
<http://www.ti.com/lit/an/sloa030a/sloa030a.pdf>.

31

Appendix A: Requirements and Verifications Table

Table 4: R/V Table

Requirements Verification Points
Passive Infrared (PIR) 1. Verification process for item 1
Sensor
a. Connect PIR sensor power to 5V
1. Must output high of 3.3 from arduino board. Note that you
V (+/- .3V) when motion must allow the necessary 1 minute
is detected. Must output setup time before trying to detect 2.5
low of 0.0 V (+/-.3 V). motion
b. Connect ground and output signal of
2. Must be able to detect an PIR sensor to digital multimeter
object approaching the c. Ensure that the output voltage when
drone within 20 ft(+/- 5 no motion is detected is between -
ft) 3V and .3V
d. Wave hand over top of lens on PIR
sensor and ensure that the output
voltage is between 3V and 3.6V
2. Verification process for item 2
a. Connect PIR sensor power and GND
to 5V and GND on arduino board
b. Connect PIR sensor output in series
to a 330 Ohm resistor, LED, and
ground said loop
c. Have one person stand 50 feet from
drone and begin walking to drone
d. Probed output voltage using
multimeter from sensor during this
period should be at 0.0(+/-.3)V
e. Once person approaching drone is
within 20 ft , probed output voltage
using multimeter from sensor should
be 3.3(+/-.3V)
Doppler Radar Pre- 1. Verification process for item 1
Amplifier Circuit
a. Build the two stage amplifier
1. The two stage amplifier according to figure 12 in Sachin’s
must have a gain of lab notebook on a breadboard.
12317 +/- 300. The first Figure attached at the end of the RV
stage must have a gain of table as well.
101 +/- 10. The second b. Disconnect the connection shown in

stage must have a gain of

32

122 +/- 10.

. Must have a passband
from 2.82 Hz (+/-
1.82Hz) to 701 Hz +/-
100 Hz. This corresponds
to outputting a high for
objects moving in the
sensor range at speeds
between the respective
lower bound and upper
bound ranges of .032
to0.148 mph and 19.19 to
25.5 mph

the schematic that connects the
output of the first opamp to the
lowpass filter that leads into the
positive terminal of the second
opamp

Test the gain of the first OpAmp by
connecting the output of the stage to
an oscilloscope

Using a waveform generator, input a
signal with a frequency of 300 Hz
(+/- 5Hz) (well within the passband)
and an amplitude of 5 mV (+/-.5mV)
Verify that the output voltage has an
amplitude of .5V (+/- .1V)

Test the gain of the second OpAmp
by connecting the output of it to an
oscilloscope

Input a signal with a frequency of
300 Hz (well within the passband)
and an amplitude of 10mV

Verify that the output voltage has a
voltage peak to peak of 2.4 V (+/-
A4V)

2. Verification process for item 2

a.

Now input a signal with a frequency
of 1300 Hz and an amplitude of
5mV to the first stage of the the
opamp

Verify that the output voltage now
has an amplitude of half the voltage
at 300 Hz (+/-.2V)

Now input a signal with a frequency
of 1300 Hz and an amplitude of 10
mV to the 2nd stage of the the
opamp

Verify that the output voltage now
has a peak to peak voltage of half the
voltage at 300 hz (+/- .2 V)

10

Doppler Radar Sensor

. Must see an output
waveform constant
output signal with a DC

1. Verification process for item 1

a.

Connect the Doppler sensor to the
pre-amplifier circuit as specified by
the attached schematic.

Connect the output of the

33

offset of 2.5V (+/- .5V)
when there is no motion

preamplifier to an oscilloscope
c. Have one person stand 40 feet from

the sensor and stand completely still 10
2. Must see an output d. Output signal on the oscilloscope
waveform with a peak to should be a constant output signal
peak voltage of 4V (+/- with a DC offset between 2 and 3
.5V) when motion is volts
detected
2. Verification process for item 2
3. Must output high of 3.3 a. Subject then begins walking towards
V (+/- .3V) when motion the drone and should notice an
of something deemed a increase in a sinusoidal like output
threat is detected. A signal with a peak to peak voltage no
threat is anything with a greater than 4V. This output will
peak to peak voltage increase as the subject gets closer to
greater than 2 volts peak the sensor until it saturates.
to peak (+/- .5 volts). b. Once person is within 15ft (+/-51t)
Must output low of 0.0 V sensor output should be saturated
(+/-.3 V) during other
cases. 3. Verification process for item 3
a. Now connect the output of the sensor
to one of the ADC pins on the
ODROID
b. Run the provided testscript which
will analyze the voltage level of the
input signal
c. Ifthe input signal is greater than 2
volts peak to peak (+/- .5 Vs), output
a high on one of the GPIO pins. Else,
output a low on the same GPIO pin.
d. Another person will probe this
voltage and see either 3.3V (+/-.3V)
or 0.0V (+/- .3V) depending on the
decision made in part ¢
System Threat Detection *Note that it must first be shown that both
sensors operate correctly on their own first
1. Sensors must both detect | for this verification to work properly
high within the same 1.5 1. Verification process for item 1
seconds a. Connect PIR sensor to 5V power and
GND
b. Connect output of PIR sensor to a
330 ohm resistor and LED
c. Connect the doppler radar as
described in the previous module 2.5

d. Take the output of doppler sensor

34

after the digital decision making and
feed it through another 330 ohm
resistor in series with an LED
Position both sensors next to each
other, facing in the same direction
and have a person (1) start still 40
feet away

Have another person (2) behind
sensor with a stop watch

Have person (1) begin walking
toward the drone

Have person (2) start stop watch
when either LED is lit

Ensure that both LEDs are high
within 1.5 seconds

5.1.2 OpenCYV Algorithms

Requirements

Verification

Points

Total .25fps processing speed

1.

Python testbench wrapper using time
module to measure time elapsed
between image frame capture and
output from Border decryption code
Ensure total elapsed time less than 4
seconds per input image maximum.
Testbench also used for color
decryption verification.

7.5

Distance calculation using
focal length with accuracy of
85(+/-5)% at 10ft

. Bring drone to height of 10 feet using

given drone software

Run distance algorithm to get
estimated height (given initial data
point to find camera focal length)
Calculate the percent difference of
the two heights to see if only 15%(+/-
5)% different, providing enough
room for the drone to slow down
enough to land.

2.5

Color decryption of border
works at 10 ft off the ground

. Use random collection test set of

images at varying heights surrounded

35

with 80(+/-5)% accuracy.

by different backgrounds with
different encoded strings and
different angles of rotation with
testbench for timing verification.
Determine success rate by
determining average success trials:
of successes / # of trials

3. Some test images from the collection
must include more than one landing pad,
only one of which is correct.

5.1.3 MAVProxy Algorithms

Requirements

Verification

Points

Ensure that the control
algorithm gets the drone to
land at the center of the
landing pad +/- 2.5 ft from the
middle.

1.

Modity initial takeoff
software procedure so
that drone flies at a
lower height of 5 feet
off the ground as
opposed to standard
operating 30 feet to
facilitate easy
processing of the
landing pad border
Run the main script
without landing pad
code verification to
determine where the
drone reaches in
relation to the center
of the landing pad.

5.1.4 Phone App

Requirements

Verification

Points

User confirmation sent and
received within 1 minute(+-1
minute) from GCM client to
Odroid XMPP server and

vice-versa.

1.

Send packet from GCM client on app
with original UTC timestamp,
compare with utc time when received
on Odroid C1+ XMPP server. Time
difference should be negligible,
timestamps must differ by no more
than 0-2 minutes.

36

2. Send packet from Odroid server with

utc timestamp , compare with UTC
timestamp on GCM client on mobile
app when received. Time difference
between internal clocks should be
negligible.

Works on Android Lollipop
devices.

. Use simulated phone in Android

Studio to run application on.
Simulated phone should be able to
run as much of the app as possible
without network connection as
possible without error.

37

Appendix B: Source Code

stable_image.cpp
#include <opencv2/highgui/highgui.hpp>

#include "opencv2/opencv.hpp"

#include <unistd.h>
#define DEBUG true
using namespace cv;

/* copy over framel to frame2 and re-populate (no longer necessary) */
void capture_img(VideoCapture cam, Mat *framel, Mat *frame2, int firstFrame) {
*frame2 = (*framel).clone();

cam >> *framel;

int main(int argc, char *argv[]) {
if ((!DEBUG) && (argc < 2)) {

std::cout << "invalid args" << std::endl;

/* ODROID should only have one camera, ignore laptop webcam */
VideoCapture cam;
if (DEBUG) {

cam = VideoCapture(1l);

}
else {

cam = VideoCapture(9);
}

/* make sure camera correctly opens */
if(!cam.isOpened()) {

std::cout << "Unable to open camera." << std::endl;

/* camera settings (PNG) (512 x 512 image) (50% exposure) (20% brightness) */
cam.set(CV_CAP_PROP_FOURCC,CV_FOURCC('M','P','N"','G"));
cam.set(CV_CAP_PROP_FRAME_WIDTH, 512);

cam.set(CV_CAP_PROP_FRAME_HEIGHT, 512);

cam.set(CV_CAP_PROP_EXPOSURE, 50);

cam.set(CV_CAP_PROP_BRIGHTNESS, 20);

Mat imagel;
Mat image2;
int firstFrame = 0;

int frameIldx = 0;

/* start processing frames */
while (1) {

capture_img(cam, &imagel, &image2, firstFrame);

/* ignore first frame (no longer needed) */

if (firstFrame == @) {

firstFrame = 1;

}

else {
Mat blurred;
/* borrowed from http://stackoverflow.com/questions/4993082/how-to-sharpen-an-image-in-opencv

[14] */
/* apply blurring to image capture to account for small movements */
double sigma = 5, threshold = 5, amount = 1;
GaussianBlur(image2, blurred, Size(), sigma, sigma);
Mat lowContrastMask = abs(image2 - blurred) < threshold;
Mat sharpened = image2*(1l+amount) + blurred*(-amount);
image2.copyTo(sharpened, lowContrastMask);
if (argc < 2) {
imwrite("tpp"+std::to_string(frameIldx)+".png", sharpened);
}
else {
imwrite(argv[1], sharpened);

}
frameldx += 1;

}

sleep(2);

/* small sleep to allow for scene to change */

//usleep(500);

}
return 0;

normalize_image.cpp

#include

#include

#include

#include

#include

<algorithm>

<vector>

<opencv2/core/core.hpp>

"opencv2/opencv.hpp"

"gen_border.hpp"

39

#define IMG_HEIGHT 512
#define IMG_WIDTH 512
#define ROW 10

#define COL 10

#define PURPLE 4

using namespace cv;

/* averages RGB channels for normalization */
void rgbNormalize(Mat *bgr_image) {
for (int 1 = ©; i < bgr_image->rows; i++) {
for (int k = ©; k < bgr_image->cols; k++) {
float reval = (float)bgr_image->at<cv::Vec3b>(i,k)[2];

float blval = (float)bgr_image->at<cv::Vec3b>(i,k)[1];
float grval = (float)bgr_image->at<cv::Vec3b>(i,k)[0];
float sum = reval + blval + grVal;

bgr_image->at<cv::Vec3b>(i,k)[2] = (int)((reval/sum)*255.0);
(int) ((blval/sum)*255.0);
(int) ((grval/sum)*255.0);

bgr_image->at<cv::Vec3b>(i,k)[1]

bgr_image->at<cv::Vec3b>(i,k)[0]

/* borrowed from http://stackoverflow.com/questions/24341114/simple-illumination-correction-in-images-
opencv-c [19] */
/* https://en.wikipedia.org/wiki/Adaptive_histogram_equalization#Contrast_Limited_AHE [12] */
/* convert image to lab space and evaluate CLAHE to spread colors over entire color spectrum */
void claheNormalize(Mat *bgr_image) {
Mat lab_image;
cvtColor(*bgr_image, lab_image, CV_BGR2Lab);

/* split original image into 3 color planes */
std::vector<Mat> lab_planes(3);
split(lab_image, lab_planes);

/* create histogram CLAHE to normalize */
Ptr<CLAHE> clahe = createCLAHE();
clahe->setClipLimit(4);

Mat dst;

clahe->apply(lab_planes[@], dst);

/* merge planes and convert back to normal bgr */
dst.copyTo(lab_planes[@]);

merge(lab_planes, lab_image);

Mat image_clahe;

cvtColor(lab_image, *bgr_image, CV_Lab2BGR);

/* leverage known color to scale pixels back to original color */

void referenceNormalize(Mat *bgr_image) {

B

unsigned int rul = @, gul = 0, bul =

unsigned int rur = @, gur = 0, bur = 0;
0, gll = 9, bll =
9,

glr = 0, blr =

unsigned int rll H

]
(]
]
unsigned int rlr = 0;
float avg_red = 0.0, avg_blue = 0.0, avg_green = 0.0;
float num_pixels = ((2.0*(IMG_HEIGHT/ROW))*(2.0*(IMG_WIDTH/COL)));

float factor_r = 0.0, factor_b = 0.0, factor_g = 0.0;

/* upper left */
for (int i = @; i < (IMG_HEIGHT/ROW)*2; i++) {
for (int k = @; k < (IMG_WIDTH/COL)*2; k++) {
bul += bgr_image->at<cv::Vec3b>(i,k)[0];
gul += bgr_image->at<cv::Vec3b>(i,k)[1];

rul += bgr_image->at<cv::Vec3b>(i,k)[2];

/* upper right */
for (int i = @; i < (IMG_HEIGHT/ROW)*2; i++) {
for (int k = (IMG_WIDTH-(2*(IMG_WIDTH/COL))); k < IMG_WIDTH; k++) {
bur += bgr_image->at<cv::Vec3b>(i,k)[0];
gur += bgr_image->at<cv::Vec3b>(i,k)[1];

rur += bgr_image->at<cv::Vec3b>(i,k)[2];

/* lower left */
for (int i = (IMG_HEIGHT-(2*(IMG_HEIGHT/ROW))); i < IMG_HEIGHT; i++) {
for (int k = @; k < (IMG_WIDTH/COL)*2; k++) {
bll += bgr_image->at<cv::Vec3b>(i,k)[0];
gll += bgr_image->at<cv::Vec3b>(i,k)[1];
rll += bgr_image->at<cv::Vec3b>(i,k)[2];

/* lower right */
for (int i = (IMG_HEIGHT-(2*(IMG_HEIGHT/ROW))); i < IMG_HEIGHT; i++) {
for (int k = (IMG_WIDTH-(2*(IMG_WIDTH/COL))); k < IMG_WIDTH; k++) {
blr += bgr_image->at<cv::Vec3b>(i,k)[0];

41

/* average each corner */

rul /=
gul /=
bul /=

rur /=
gur /=
bur /=

rll /=
gll /=
bll /=

rlr /=
glr /=
blr /=

/* average over four corners */
avg_red = (rul+rur+rll+rlr)/4.0;
e = (bul+bur+bll+blr)/4.0;

avg_blu

avg_green = (gul+gur+gll+glr)/4.0;

glr += bgr_image->at<cv::Vec3b>(i,k)[1];

rlr += bgr_image->at<cv::Vec3b>(i,k)[2];

num_pixels;
num_pixels;

num_pixels;

num_pixels;
num_pixels;

num_pixels;

num_pixels;
num_pixels;

num_pixels;

num_pixels;
num_pixels;

num_pixels;

/* scaling factor to apply to all pizels in image */
b = (COLOR_TABLE[PURPLE][@])/avg_blue;

g = (COLOR_TABLE[PURPLE][1])/avg_green;

r = (COLOR_TABLE[PURPLE][2])/avg_red;

factor_|
factor_

factor_

/* scal

e each pixel */

for (int i = @; i < bgr_image->rows; i++) {

for (int k = @; k < bgr_image->cols;

>at<cv::Vec3b>(k,i)[@]*factor_b));

>at<cv::Vec3b>(k,i)[1]*factor_g));

>at<cv::Vec3b>(k,i)[2]*factor_r));

}

/* based on

bgr_image->at<cv::Vec3b>(k,i)[0]

bgr_image->at<cv::Vec3b>(k,i)[1]

bgr_image->at<cv::Vec3b>(k,i)[2]

k++) {
= std::min(255, int(bgr_image-

std::min(255, int(bgr_image-

std::min(255, int(bgr_image-

42

http://docs.opencv.org/2.4/doc/tutorials/core/basic_linear_transform/basic_linear_transform.html [20] */

/* brighten/darken image using saturation */
void brighten(Mat image, Mat *bgr_image, int beta=-50) {
double alpha = 1.0;

/* saturate each pixel to brighten/darken image */
for(int y = 0; y < image.rows; y++){
for(int x = 0; x < image.cols; x++) {
/* apply to each color channel */
for(int ¢ = 9; c < 3; c++) {
bgr_image->at<Vec3b>(y,x)[c] =

saturate_cast<uchar>(alpha*(image.at<Vec3b>(y,x)[c]) + beta);

int main(int argc, char** argv)
{
if (argc < 3) {

std::cout << "invalid args" << std::endl;

else {
Mat image;

Mat bgr_image;

int idx = @;

/* darken the image and then rgb normalize (last iter will brighten) */
while (idx < 2) {
image = imread(argv[1]);
bgr_image = Mat::zeros(image.size(), image.type());
if (idx < 1) {
brighten(image, &bgr_image, 0);
rgbNormalize(&bgr_image);
}
else {
/* clahe normalize and then final rgb */
brighten(image, &bgr_image, 0);
claheNormalize(&bgr_image);
//rgbNormalize(&bgr_image);
}
imwrite(argv[2], bgr_image);

idx += 1;

43

std::cout << "success" << std::endl;

}

return 0;

gen_border.cpp
#include <iostream>

#include <math.h>

#include <opencv2/highgui/highgui.hpp>

#include <opencv2/opencv.hpp>

#include <openssl/sha.h>

#include "gen_border.hpp"

/* defines for image handling */
#define IMG_HEIGHT 512

#define IMG_WIDTH 512

#define OFFSET_X 20

#define OFFSET_Y 20

#define ROW 10

#define COL 10

using namespace cv;

/* consts for border generation */

const short PADDING BITS[] = {6, 1, 8, 9, 1@, 11, 18, 19, 44, 45, 54, 55, 80, 81, 88, 89, 90, 91, 98, 99};

const short PAD_LEN_MID

4;
const short PAD_LEN_END

16;

/* encode blocks back to corresponding color */
char toHex(int c) {
if (c < 10) {

return '0'+c;

}
else {

return 'A'+(c-10);
}

/* percentage of matching characters (only equal length strings) */

float similarity(string si1, string s2) {
int special_idx = 0;

int total_wrong = 0;

44

for (int i = @; i < sl.length(); i++) {
if (i == PADDING_BITS[special_idx]) {

special_idx += 1;

}
else {
if (s1[i] != s2[i]) {
total_wrong += 1;
}
}

}
return 1-(float)total_wrong/(sl.length());

string generateBorder(const unsigned char *str, string output_file, bool create_img
/* quad digits for now*/
unsigned char hash[20];
char quad_digs[ROW*COL+1];
int special_idx = @, idx = @, hash_idx = 0, write_idx = 0, hl = -1, h2 = -1, 11
/* create SHA1l encoded string for security */
SHA1(str, sizeof(str) - 1, hash);
while (idx < ROW*COL) {
/* ignore padding blocks */
if (idx == PADDING_BITS[special_idx]) {
special_idx += 1;
quad_digs[idx] = '4';
}
else {
/* take a hex digit and break into base 4 (4 primary colors) */
if (h1 == -1) {
int val = hash[hash_idx];
hl = val % 4;

val /= 4;
h2 = val % 4;
val /= 4;
11 = val % 4;
val /= 4;
12 = val % 4;
val /= 4;

hash_idx += 1;

}

if (12 1= -1) {
quad_digs[idx] = 12+'0";
12 = -1;

}

else if (11 != -1) {
quad_digs[idx] = 11+'0";

false) {

-1, 12 =

_1;

45

11 = -1;

}
else if (h2 != -1) {
quad_digs[idx] = h2+'0";
h2 = -1;
}
else if (h1 != -1) {
quad_digs[idx] = hl+'@';
hi = -1;
}
}
idx += 1;

}
/* C-style string */
quad_digs[100] = '\@';

/* create the black image with white border */
if (create_img) {
Mat img(IMG_HEIGHT+OFFSET_Y*12, IMG_WIDTH+OFFSET_X*12, CV_8UC3, Scalar(0,0,0));
rectangle(img, Point(@+OFFSET_Y*2, @+OFFSET_X*2), Point(IMG_HEIGHT+OFFSET_Y*10,
IMG_WIDTH+OFFSET_X*10), Scalar(255,255,255), OFFSET_Y*2);
rectangle(img, Point(@+OFFSET_Y*4, @+OFFSET_X*4), Point(IMG_HEIGHT+OFFSET_Y*8,
IMG_WIDTH+OFFSET_X*8), Scalar(@,8,0), OFFSET_Y*2);
/* color in the blocks */
int spec_idx = @, hex_idx = @, block_idx = 0, digit;
for (int k = @; k < ROW; k++) {
for (int 1 = @; i < COL; i++) {
digit = quad_digs[hex_idx]-'@";
Scalar color = COLOR_TABLE[digit];
hex_idx += 1;
block_idx += 1;
rectangle(img, Point(i*(IMG_HEIGHT/ROW)+OFFSET_Y*6, k*(IMG_WIDTH/COL)+OFFSET_X*6),
Point((i+1)*(IMG_HEIGHT/ROW)+OFFSET_Y*6, (k+1)*(IMG_WIDTH/COL)+OFFSET_X*6), color, -1);

}

/* save template */
imwrite(output_file, img);
}

return quad_digs;

void decodeBorder(string input_file, string toFind) {
/* load the image */
Mat img = imread(input_file, CV_LOAD_IMAGE_COLOR);
resize(img, img, Size(IMG_WIDTH, IMG_HEIGHT));

46

/* result strings */
char default_z[101];
for (int i = @; i < ROW*COL; i++) {
default_z[i] = 'Z";
}
default_z[100] = '\@';
string results[] = {default_z, default_z, default_z, default_z};

/* threshold the values */

Mat hsv_color;

hsv_color.create(1,1,CV_8UC(3));

Mat hsv_img(IMG_HEIGHT, IMG_WIDTH, CV_LOAD_IMAGE_COLOR, Scalar(e,0,0));

Mat mask(IMG_HEIGHT, IMG_WIDTH, CV_8UC3, Scalar(@,0,0));

Mat or_res(IMG_HEIGHT+OFFSET_Y, IMG_WIDTH+OFFSET_X, CV_8UC3, Scalar(0,0,0));

for (int bgr_idx = @; bgr_idx < COLOR_TABLE_LEN; bgr_idx++) {
/* convert img and color to hsv, get inRange and bitwise AND with mask*/
cvtColor(img, hsv_img, CV_BGR2HSV);
Scalar bgr = COLOR_TABLE[bgr_idx];
Mat color(1, 1, CV_8UC(3), bgr);
cvtColor(color, hsv_color, CV_BGR2HSV);
inRange(hsv_img, Scalar(hsv_color.at<Vec3b>(0,0)[0]-10,0,0),
Scalar(hsv_color.at<Vec3b>(0,0)[0]+10,255,255), mask);
Mat res;

bitwise_and(img,img,res, mask=mask);

/* decode blocks from information */
vector<int> 1_blocks[4];
for (int 1 = @; i < res.rows; i++) {
for (int k = 0@; k < res.cols; k++) {
/* check if value > @ */
int b = (int)res.at<Vec3b>(i, k)[0];
int g = (int)res.at<Vec3b>(i, k)[1];
int r = (int)res.at<Vec3b>(i, k)[2];
if ((b>0) || (g >0) [| (r>80)) {
int n_row = floor(i*(float)ROW/IMG_HEIGHT);
int n_col = floor(k*(float)COL/IMG_WIDTH);
int blocks[4] = {int(n_row*ROW+n_col), (ROW*COL-1)-int(n_col*COL+(ROW-1-n_row)),
(ROW*COL-1)- int(n_row*ROW+n_col), int(n_col*COL+(ROW-1-n_row))};

/* check if block already used for this rotation angle */
for (int b_idx = @; b_idx < 4; b_idx++) {
bool flag = false;
for (int 1lb_idx = ©@; 1lb_idx < 1_blocks[b_idx].size(); 1lb_idx++) {
if (1_blocks[b_idx][1lb_idx] == blocks[b_idx]) {

47

}

flag = true;

break;

if (flag == true) {

continue;

/* determine boundaries */

float
float
float
float

float
float
float
float

/* if

b_x_left_boundary = n_col*((float)IMG_WIDTH/COL);
b_x_right_boundary = ((n_col+1)*((float)IMG_WIDTH/COL));
b_x_left_mid = b_x_left_boundary + ((float)IMG_HEIGHT/ROW*.4);
b_x_right_mid = b_x_left_boundary + ((float)IMG_HEIGHT/ROW*.6);

b_y_top_boundary = n_row*((float)IMG_HEIGHT/ROW);
b_y_bot_boundary = ((n_row+1)*((float)IMG_HEIGHT/ROW));

b_y top_mid = b_y top_boundary + ((float)IMG_WIDTH/COL*.4);
b_y bot_mid = b_y_ top_boundary + ((float)IMG_WIDTH/COL*.6);

in middle of boundary, check if right color or first guess */

if ((k >= b_x_left_mid) & (k <= b_x_right_mid) & (i >= b_y_top_mid) && (i <=

b_y_bot_mid)) {

1

blocks[b_idx].push_back(blocks[b_idx]);

bool block_set_flag = false;
if (results[b_idx][blocks[b_idx]] == 'Z") {

}

block_set_flag = true;

else if (toFind[b_idx] == toHex(bgr_idx)) {

}

block_set_flag = true;

if (block_set_flag) {

rectangle(or_res, Point(int(b_x_left_boundary), int(b_y_top_boundary)),

Point(int(b_x_right_boundary), int(b_y_bot_boundary)), COLOR_TABLE[bgr_idx], -1);

results[b_idx][blocks[b_idx]] = toHex(bgr_idx);

/* determine best rotation string */

float dist_score = 0.0;

int idx = -1;

for (int 1 = 0; i < 4; i++) {

48

float new_score = similarity(results[i], toFind);
if (new_score > dist_score) {
dist_score = new_score;

idx = i;

}

std::cout << "result

<< dist_score << std::endl;

int main(int argc, char* argv[]) {
if (argc < 6) {
std::cout << "invalid args" << std::endl;
}
else {
string should_encode = argv[1];
string should_decode = argv[2];
string em_addr_str = argv[3];
const unsigned char *email_address = new unsigned char[em_addr_str.length()+1];
strcpy((char *)email_address,em_addr_str.c_str());
string encode_filename = argv([4];
string decode_filename = argv[5];
if (should_encode == "Y") {
generateBorder(email_address, encode_filename, true);
}
if (should_decode == "Y") {
string encoded_hash = generateBorder(email_address, encode_filename, false);

decodeBorder(decode_filename, encoded_hash);

}

return 0;

gen_border.hpp
#ifndef BORDER_H
#define BORDER_H

/* perfect lighting */
const cv::Scalar COLOR_TABLE[] = {cv::Scalar(@,34,255), cv::Scalar(64,247,2), cv::Scalar(255,30,0),
cv::Scalar(3, 251, 255), cv::Scalar(255,0,174)};

/* saturated lighting */
//const cv::Scalar COLOR_TABLE[] = {cv::Scalar(104, @, 150), cv::Scalar(105,102,47),

cv::Scalar(147,72,35), cv::Scalar(62, 95, 96), cv::Scalar(255,0,174)};

const short COLOR_TABLE_LEN = 5;

49

#endif

gen_template.cpp
#include <iostream>

#include <math.h>
#include <limits>

#include <sstream>

#include <opencv2/highgui/highgui.hpp>

#include "opencv2/opencv.hpp"
#include "gen_border.hpp"
#define IMG_HEIGHT 512
#define IMG_WIDTH 512
#define COLOR_TABLE_LEN 5

using namespace cv;

const float pi = (float)(22/7);

/* borrowed from http://docs.opencv.org/3.1.0/da/d6e/tutorial py geometric_transformations.html#gsc.tab=0
[51 */
Mat sub_img(Mat img, Point2f center, float theta,int width, int height){

Mat out;
Point pt(width/2, height/2);

/* rotates image by theta(radians) */

Mat M = getRotationMatrix2D(pt,theta*180/pi,1);
Size s_1 (height,width);
warpAffine(img,out,M,s_1);

return out;

void white_out(Mat img,Point top_1,Point bottom_r, vector<Point> contour){
/* white out unwanted pixels in bounded rectangle but outside of contour */
for(int x = top_l.x; x< bottom_r.x; x++){
for(int y = top_l.y; y<bottom_r.y; y++){
Point test (x,y);
double dist = pointPolygonTest(contour,test,true);
if(dist < 1) {
img.at<Vec3b>(y,x) = Vec3b(255,255,255);

50

void find_matching_contour(Mat im, vector< vector<Point> >* contours, int* best_cnt_idx)
{

Mat imgray;

Mat thresh;

vector<Vec4i> hierarchy;

double parent_area, child_area;

float ratio, min_ratio = -1;

/* convert to grayscale, find contours */

cvtColor(im, imgray, COLOR_BGR2GRAY);

threshold(imgray,thresh,127,255,0);
findContours(thresh,*contours,hierarchy,CV_RETR_TREE,CV_CHAIN_APPROX_SIMPLE);

*(best_cnt_idx) = -1;
for(int x = @; x<hierarchy.size(); x++){
if((int)hierarchy[x][3] == -1) {

continue;

parent_area = contourArea((*contours)[hierarchy[x][3]1]);

child_area = contourArea((*contours)[x]);

/* child insignificant */
if(child_area<200) {

continue;

/* desired ratio range between white outline and color border */
ratio = (float)parent_area/child_area;
if(ratio > .85 && ratio < 2.0) {
//if (ratio > min_ratio) {
*(best_cnt_idx) = x;
min_ratio = ratio;
break;

/1}

void find_contour_rect(vector< vector<Point> > contours, int best_cnt_idx, Point* fst, Point* snd){

int fst_x = std::numeric_limits<int>::max();

51

int fst_y = std::numeric_limits<int>::max();

int snd_x = 0;

int snd_y = 0;
/* setup coordinates to crop (top left, bottom right) */
for (int x = @; x < contours[best_cnt_idx].size(); x++){
if(contours[best_cnt_idx][x].x < fst_x)
fst_x = contours[best_cnt_idx][x].x;
if(contours[best_cnt_idx][x].x > snd_x)
snd_x = contours[best_cnt_idx][x].x;
if(contours[best_cnt_idx][x].y < fst_y)
fst_y = contours[best_cnt_idx][x].y;
if(contours[best_cnt_idx][x].y > snd_y)

snd_y = contours[best_cnt_idx][x].y;

fst->x = fst_x;

fst->y = fst_y;
snd->x = snd_x;

snd->y = snd_y;

void find_contour_rotated(Mat im, vector< vector<Point> >* contours, int* child, int* bst_idx){
Mat imgray;
Mat thresh;
vector<Vec4i> hierarchy;
int bst_area = -1;

*bst_idx = -1;

/* convert to grayscale and find contours */
cvtColor(im, imgray, COLOR_BGR2GRAY);

threshold(imgray,thresh,127,255,0);
findContours(thresh,*contours,hierarchy,CV_RETR_TREE,CV_CHAIN_APPROX_SIMPLE);

/* find largest contour area */
for(int x = @ ; x<contours->size(); x++){
double area = contourArea((*contours)[x]);
if(area > bst_area){
bst_area = area;

*bst_idx = x;

*child = hierarchy[*bst_idx][2];

52

Mat recrop(Mat img, int lower_bound, int upper_bound) {
Point fFst(IMG_WIDTH*2, IMG_HEIGHT*2);
Point snd(-1, -1);

Mat hsv_color;

hsv_color.create(1,1,CV_8UC(3));

Mat hsv_img(IMG_HEIGHT, IMG_WIDTH, CV_LOAD_IMAGE_COLOR, Scalar(e,0,0));
Mat mask(IMG_HEIGHT, IMG_WIDTH, CV_8UC3, Scalar(®,0,0));

/* find purple borders */
for (int i = COLOR_TABLE_LEN-1; i < COLOR_TABLE_LEN; i++) {
cvtColor(img, hsv_img, CV_BGR2HSV);
Scalar bgr = COLOR_TABLE[i];
Mat color(1, 1, CV_8UC(3), bgr);
cvtColor(color, hsv_color, CV_BGR2HSV);
inRange(hsv_img, Scalar(hsv_color.at<Vec3b>(9,0)[0]-10,lower_bound,lower_bound),
Scalar(hsv_color.at<Vec3b>(0,0)[0]+10,upper_bound, upper_bound), mask);
Mat res;

bitwise_and(img,img,res, mask=mask);

for (int 1 = @; i < res.rows; i++) {
for (int k = 0@; k < res.cols; k++) {
int b = (int)res.at<Vec3b>(i, k)[0];
int g = (int)res.at<Vec3b>(i, k)[1];
int r = (int)res.at<Vec3b>(i, k)[2];
if ((b>0) || (g >0) [| (r>80)) {
if (k < fst.x) {

fst.x = k;

}

if (k > snd.x) {
snd.x = k;

}

if (i < fst.y) {
fst.y = i;

}

if (i > snd.y) {

snd.y = i;

/* crop around purple borders and resize again --> img should be rotated already so should be okay */

Mat crop_img = img(Rect(fst.x, fst.y,snd.x-fst.x,snd.y-fst.y));
resize(crop_img, crop_img, Size(IMG_HEIGHT, IMG_WIDTH));

53

int

return crop_img;

process(string input_filename, string output_filename, int lower_bound, int upper_bound){
Mat img = imread(input_filename, CV_LOAD_IMAGE_COLOR);
try {
resize(img, img, Size(IMG_HEIGHT*1.2, IMG_WIDTH*1.2));
}
catch (cv::Exception) {
std::cout << "file being modified..failed" << std::endl;
return -1;
}
vector< vector<Point> > contours;
int best_cnt_idx, mult = @, divis = 30, best_x, best_y, best_w, best_h;
float min_ratio = std::numeric_limits<float>::max();
Point fst;
Point snd;
vector<int> bst_dims;

Mat bst_img;

/* find the contour we want to crop */
find_matching_contour(img, &contours, &best_cnt_idx);
if(best_cnt_idx == -1) {

std::cout << "missing contour.." << std::endl;

return -1;

/* find bounding rect coords and whiteout extra pixels */
find_contour_rect(contours,best_cnt_idx, &fst, &snd);

Point new_fst(std::max(@, fst.x-5),std::max(0, fst.y-5));

Point new_snd(std::min(snd.x+5, IMG_WIDTH),std::min(snd.y+5, IMG_HEIGHT));

white_out(img,new_fst,new_snd, contours[best_cnt_idx]);

/* crop out the desirect rect and resize up */
Mat crop_img = img(Rect(new_fst.x, new_fst.y,new_snd.x-new_fst.x,new_snd.y-new_fst.y));

resize(crop_img, crop_img, Size(IMG_HEIGHT, IMG_WIDTH));

/* try different rotations in 5 degree increments */
Point center(IMG_HEIGHT/2,IMG_WIDTH/2);
while(mult <= 15) {
Mat rotated = sub_img(crop_img,center,pi/divis*mult,512,512);

vector< vector<Point> > contours;
int child;

int bst_idx;

54

find_contour_rotated(rotated, &contours, &child, &bst_idx);

if (child == -1) {
mult += 1;
continue;

}

Rect curr_rect = boundingRect(contours[child]);

double contour_area = contourArea(contours[child]);
int x = curr_rect.x;

int y = curr_rect.y;

int w = curr_rect.width;

int h = curr_rect.height;

double bounded_area = w*h;

double ratio = bounded_area/contour_area;

/* ratio between bounding rect and contour --> MIN for 90 degree angles */
if(ratio < min_ratio){

min_ratio = ratio;

best_x = x;

best_y = vy;

best_w = w;

best_h = h;

bst_img = rotated;
}

mult++;

/* if able to rotate within reasonable bounds, resize and finish */
if(min_ratio < 1.2){
Mat im = bst_img(Rect(best_x, best_y, best_w, best_h));
resize(im, im, Size(IMG_HEIGHT, IMG_WIDTH));
Mat crop_final = recrop(im, lower_bound, upper_bound);

imwrite(output_filename, crop_final);

}

else {
std::cout << "rotate failed" << std::endl;
return -1;

}

return 0;

int main(int argc, char* argv[]){
if (argc < 5) {

std::cout << "invalid args" << std::endl;

55

else {
string input_filename = argv[1];

string output_filename = argv[2];

std::istringstream s3(argv[3]);
int lower_bound, upper_bound;
if (!(s3 >> lower_bound)) {
std::cout << "invalid args" << std::endl;
}
std::istringstream s4(argv[4]);
if (!(s4 >> upper_bound)) {

std::cout << "invalid args" << std::endl;

}
if (process(input_filename, output_filename, lower_bound, upper_bound) == 0) {
std::cout << "completed" << std::endl;
}
}
return 0;

locate_border.cpp
#include <iostream>

#include <math.h>

#include <opencv2/highgui/highgui.hpp>

#include <opencv2/opencv.hpp>

#include <openssl/sha.h>

#include "gen_border.hpp"

/* defined for image handling */
#define IMG_HEIGHT 512
#define IMG_WIDTH 512

using namespace cv;

int outlineBorder(string input_file) {
Mat img;
try {
img = imread(input_file, CV_LOAD_IMAGE_COLOR);
resize(img, img, Size(IMG_WIDTH, IMG_HEIGHT));

}
catch (cv::Exception) {
std::cout << "failed" << std::endl;

return -1;

Mat hsv_color;

hsv_color.create(1,1,CV_8UC(3));

Mat hsv_img(IMG_HEIGHT, IMG_WIDTH, CV_LOAD_IMAGE_COLOR, Scalar(e,0,0));
Mat mask(IMG_HEIGHT, IMG_WIDTH, CV_8UC3, Scalar(e,0,0));

Mat or_res(IMG_HEIGHT, IMG_WIDTH, CV_8UC3, Scalar(0,0,0));

unsigned long long num_pixels = 0;
unsigned long long x_val = 9;

unsigned long long y_val = 9;

Point avg_l1 = Point(-1, -1), avg_lr = Point(-1, -1), avg_ul = Point(-1, -1), avg_ur = Point(-1,
-1);
for (int bgr_idx = 4; bgr_idx < COLOR_TABLE_LEN; bgr_idx++) {
/* convert img and color to hsv, get inRange and bitwise AND with mask*/
cvtColor(img, hsv_img, CV_BGR2HSV);
Scalar bgr = COLOR_TABLE[bgr_idx];
Mat color(1, 1, CV_8UC(3), bgr);
cvtColor(color, hsv_color, CV_BGR2HSV);
inRange(hsv_img, Scalar(hsv_color.at<Vec3b>(0,0)[0]-10,90,90),
Scalar(hsv_color.at<Vec3b>(0,0)[0]+10,255,255), mask);
Mat res;
bitwise_and(img,img,res,mask=mask);

bitwise_or(res, or_res, or_res);

for (int i = @; i < res.rows; i++) {
for (int k = @; k < res.cols; k++) {
int b = (int)res.at<Vec3b>(i, k)[0];
int g = (int)res.at<Vec3b>(i, k)[1];
int r = (int)res.at<Vec3b>(i, k)[2];
if ((b>0) || (g>0) [| (r>80)){
x_val += k;
y_val += i;

num_pixels += 1;

¥
Point center = Point(-1, -1);

center.x = x_val/((float)num_pixels);

center.y = y_val/((float)num_pixels);

57

std::cout << center.x << << center.y << std::endl;

if ((center.x >= 0) && (center.x <=156)) {
std::cout << "LEFT" << std::endl;

¥

else if ((center.x >= 356) & (center.x <= 512)){
std::cout << "RIGHT" << std::endl;

¥

else if ((center.y >= 0) && (center.y <= 156)) {
std::cout << "UP" << std::endl;

¥

else if ((center.y >= 356) & (center.y <= 512)) {
std::cout << "DOWN" << std::endl;

¥

else {
std::cout << "CENTER" << std::endl;

¥

return 0;

int main(int argc, char *argv[]) {
if (argc < 2) {

std::cout << "invalid args." << std::endl;

}
else {
string input_file = argv[1];
outlineBorder(input_file);
}
return 0;
}
Makefile
CC = g++

CRYPTO = -lcrypto
FLAGS = -ggdb -std=c++11

all: template border capture locate stabilize normalize
template: gen_template.cpp
$(CC) $(FLAGS) " pkg-config --cflags opencv’ -o template gen_template.cpp ~pkg-config --1libs opencv”

$(CRYPTO)

border: gen_border.cpp gen_border.hpp
$(CC) $(FLAGS) " pkg-config --cflags opencv™ -o border gen_border.cpp "pkg-config --1libs opencv’

58

$(CRYPTO)

capture: capture_image.cpp
$(CC) $(FLAGS) " pkg-config --cflags
$(CRYPTO)

locate: locate_border.cpp
$(CC) $(FLAGS) " pkg-config --cflags
$(CRYPTO)

stabilize: stable_image.cpp
$(CC) $(FLAGS) " pkg-config --cflags
$(CRYPTO)

normalize: normalize_image.cpp
$(CC) $(FLAGS) "pkg-config --cflags
opencv™ $(CRYPTO)

devel2.py
import subprocess

import math

import time

import select

import json

import re

import sys

import os

from threading import Thread

from Queue import Queue, Empty

CONSTANTS
HOLD_TIME = .149999999999999994
SLEEP_TIME = .5

M_FT_CONV = 3.28084

FLYING_ALTITUDE = 30 #ft
FENCE_OUTPUT_FILE = "./fence.txt"
LAT_LON_DIV = 10000000.0
LATITUDE_CONV = 10000.6/90.6%3280.4
LONGITUDE_CONV = 364537.462
EMAIL_ADDRESS = None

THRESHOLD = .75

UPPER = 255

OPTIONS = [65, 80]

Processes/Pipes

opencv’ -0

opencv. -0

opencv. -0

opencv. -0

capture capture_image.cpp " pkg-config --1libs opencv”

locate locate_border.cpp " pkg-config --1libs opencv’

stabilize stable_image.cpp ~pkg-config --libs opencv’

normalize normalize_image.cpp "~ pkg-config --1libs

proc_proxy = None
proc_cv = None
proc_ci = None
proc_GPIO = None
proc_APP = None
pipes_proxy = None
pipes_cv = None
pipes_ci = None
pipes_GPIO = None
pipes_APP = None
t_proxy = None
t_ci = None

t_cv = None
t_GPIO = None
t_APP = None
gq_proxy = None
g_ci = None

g_cv = None
q_GPIO = None
q_APP = None

Other variables
DEBUG = True
is_confirmed = False
gpio_high = False

should_terminate = False

Queueing
def enqueue_output(out, queue):
for line in iter(out.readline, b''):
queue.put(line)

out.close()

def setup():
global proc_proxy, proc_cv, proc_ci, proc_GPIO, proc_APP
global pipes_proxy, pipes_cv, pipes_ci, pipes_GPIO, pipes_APP
global DEBUG
global t_proxy, t_cv, t_ci, t_GPIO, t_APP

global q_proxy, q_cv, gq_ci, q_GPIO, q_APP

for now assuming SITL device

if DEBUG:

dronekit-sitl copter

proc_proxy = subprocess.Popen(["exec mavproxy.py --master=tcp:127.0.0.1:5760 --map"],

60

stdout=subprocess.PIPE, stdin=subprocess.PIPE, shell=True)
else:
proc_proxy = subprocess.Popen(["exec mavproxy.py --map"], stdout=subprocess.PIPE,
stdin=subprocess.PIPE, shell=True)
pipes_proxy = [proc_proxy.stdin, proc_proxy.stdout]

queueing idea borrowed from http://stackoverflow.com/questions/375427/non-blocking-read-on-a-

subprocess-pipe-in-python [21]

g_proxy = Queue()
t_proxy = Thread(target=enqueue_output, args=(pipes_proxy[1], qg_proxy))
t_proxy.daemon = True

t_proxy.start()

proc_cv = subprocess.Popen(["exec bash"], stdout=subprocess.PIPE, stdin=subprocess.PIPE, shell=True)
pipes_cv = [proc_cv.stdin, proc_cv.stdout]

g_cv = Queue()

t_cv = Thread(target=enqueue_output, args=(pipes_cv[1], q_cv))

t_cv.daemon = True

t_cv.start()

proc_ci = subprocess.Popen(["exec ../stabilize ./tmp_capture.png"], stdin=subprocess.PIPE,
stdout=subprocess.PIPE, shell=True)

pipes_ci = [proc_ci.stdin, proc_ci.stdout]

g_ci= Queue()

t_ci = Thread(target=enqueue_output, args=(pipes_ci[1], q_ci))

t_ci.daemon = True

t_ci.start()

proc_GPIO = subprocess.Popen(["exec bash"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, shell=True)
pipes_GPIO = [proc_GPIO.stdin, proc_GPIO.stdout]
g_GPIO = Queue()

t_GPIO = Thread(target=enqueue_output, args=(pipes_GPIO[1], q_GPIO))
t_GPIO.daemon = True
t_GPIO.start()

#if DEBUG:

proc_APP = subprocess.Popen(["exec bash"], stdin=subprocess.PIPE, stdout=subprocess.PIPE,
shell=True)

#telse:

proc_APP = subprocess.Popen(["exec python ../gcm_server.py"], stdin=subprocess.PIPE,
stdout=subprocess.PIPE, shell=True)

pipes_APP = [proc_APP.stdin, proc_APP.stdout]
Queue()
t_APP = Thread(target=enqueue_output, args=(pipes_APP[1], q_APP))

q_APP

t_APP.daemon = True

t_APP.start()

61

return True

close pipes and kill processes

def teardown():
global proc_proxy, proc_cv, proc_ci, proc_GPIO, proc_APP
global pipes_proxy, pipes_cv, pipes_ci, pipes_GPIO, pipes_APP
global t_proxy, t_cv, t_ci, t_GPIO, t_APP

def closeup(p, pipes, t):
for pipe in pipes:
try:
pipe.close()
except:
pass
p.terminate()
try:
p.kill()
except Error:

pass

closeup(proc_proxy, pipes_proxy, t_proxy)
closeup(proc_cv, pipes_cv, t_cv)
closeup(proc_ci, pipes_ci, t_ci)
closeup(proc_GPIO, pipes_GPIO, t_GPIO)
closeup(proc_APP, pipes_APP, t_APP)

return True

process image (remove borders, decode, or look for direction)
def scan_image(mode="template", args=None):

global pipes_cv

if DEBUG:
return None
else:
if mode == "template":
pipes_cv[@].write("../template ./tmp_capture{@}.png {1} {2}\n").format(args["idx"],
argx["lower"], args["upper"])
output = collect_output(“opencv", keys=["missing", "complete", "error", "invalid"],
debug=False)
return output
elif mode == "decode":
pipes_cv[@].write("../border N Y {0} {1} {2}\n".format(EMAIL_ADDRESS, "./tmp_capture{@}.png",
"./tmp_solution.png").format(args["idx"]))
output = collect_output(“opencv", keys=["invalid", "result"], debug=False)

return output

62

elif mode == "locate":
pipes_cv[@].write("../locate ./border.png")
output = collect_output(“opencv", keys=["invalid", "LEFT", "RIGHT", "UP", "DOWN", "CENTER"],
debug=False)

return output

def collect_output(proc, attempts=30, keys=["GPS_RAW_INT"], flag="or", debug=False):
gather output for timeout seconds, examine
q = None
if ("mav" in proc) or ("proxy" in proc):
global g_proxy
q = q_proxy
elif "opencv" in proc:
global g_cv
q =qg_cv
elif "capture" in proc:
global g_ci
q = q_ci
elif "GPIO" in proc:
global g_GPIO
q = g_GPIO
elif "APP" in proc:
global q_APP
q = g_APP

used_attempts = @
while (used_attempts < attempts):
try:
line = qg.get_nowait()
print 'Discovered: '+line
found = False
if flag == "and":
found = True
for key in keys:
if not (key in line):
found = False
break
else:
found = False
for key in keys:
if key in line:
found = True
break
if found:
return line

except:

pass
used_attempts += 1

return None

query for gps status on drone, return information decoded
def get_curr_latlon():
global pipes_proxy

output = None

while output is None:
pipes_proxy[@].write("status GPS_RAW_INT\n")
output = collect_output(“proxy")

if output is None:
print "unable to retrieve gps corodinates..try again?"
else:
gps_info = output.split("GPS_RAW_INT")[1]
gps_info_str = json.dumps(gps_info)
gps_info_arr = (filter(None, re.split("[{, \!?:}\"\n]+", gps_info_str)))[:-1]
gps_info_dict = {}
for i in xrange(@, len(gps_info_arr), 2):

gps_info_dict[gps_info_arr[i]] = gps_info_arr[i+1]

curr_lat, curr_lon = int(gps_info_dict['lat'])/LAT_LON_DIV, int(gps_info_dict['lon"'])/LAT_LON_DIV

return (curr_lat, curr_lon)

issue GPS location for drone to travel to
def go_to(lat, lon, fn=None, fn_args = None, ret=False, curr_Llat=None, curr_Lon=None):

global pipes_proxy

pipes_proxy[@].write("guided {0} {1} {2}\n".format(lat, lon,
int(math.ceil(FLYING_ALTITUDE/M_FT_CONV))))

output = None
if not (fn is None):
if not (fn_args is None):
output = fn(fn_args)
else:

output = fn()

if ret and (not (curr_lat is None) and (not curr_lon is None)):
time.sleep(5)
pipes_proxy[@].write("guided {0} {1} {2}\n".format(curr_lat, curr_lon,
int(math.ceil(FLYING_ALTITUDE/M_FT_CONV))))

return output

64

set the drone in guided and arm
def arm_throttle():
global pipes_proxy

pipes_proxy[@].write("mode guided\n")
pipes_proxy[@].write("arm throttle\n")

takeoff to flying altitude (beginning/threat avoidance)
def takeoff(arm=True):
global pipes_proxy

optionally arm the throttle
if arm:
arm_throttle()
time.sleep(5)

pipes_proxy[@].write("takeoff {@}\n".format(FLYING_ALTITUDE/M_FT_CONV))

print "completed takeoff commands"

time.sleep(30)

set the drone into landing mode (not RTL)
def land():
global pipes_proxy

pipes_proxy[@].write("mode land\n")
time.sleep(10)

print "completed landing commands"

look for the pad's direction
def initial_search():

global pipes_proxy

pipes_proxy[@].write("mode guided\n")

establish coordinates to evaluate
curr_lat, curr_lon = get_curr_latlon()
lat_u = curr_lat+(50/(LATITUDE_CONV))
lat_d = curr_lat-(50/(LATITUDE_CONV))
lon_r = curr_lon+(50/(LONGITUDE_CONV))
lon_1 = curr_lon-(50/(LONGITUDE_CONV))

best_dir = None

chceck if the direction is useful

65

def move_helper(direction):
best_dir = None
for i in xrange(50):
output = scan_image(mode="1ocate")
if not (output is None):
best_dir = direction
time.sleep(©.05)

return best_dir

try all four directions in cross

output_u = go_to(lat_u, curr_lon, move_helper, "up", True, curr_lat, curr_lon)
time.sleep(10)

output_d = go_to(lat_d, curr_lon, move_helper, "down", True, curr_lat, curr_lon)
time.sleep(10)

output_r = go_to(curr_lat, lon_r, move_helper, "right", True, curr_lat, curr_lon)
time.sleep(10)

output_l = go_to(curr_lat, lon_1l, move_helper, "left", True, curr_lat, curr_lon)

time.sleep(10)

if not (output_u is None):
best_dir = output_u
elif not (output_d is None):
best_dir = output_d
elif not (output_r is None):
best_dir = output_r
elif not (output_l is None):
best_dir = output_1

print "drone initial flight path completed ", best_dir

return best_dir

def move_towards_landing(direction):

global pipes_proxy, pipes_cv

establish directional lat/lon
curr_lat, curr_lon = get_curr_latlon()
lat_u = curr_lat+(20/(LATITUDE_CONV))
lat_d = curr_lat-(20/(LATITUDE_CONV))
lon_r = curr_lon+(20/(LONGITUDE_CONV))
lon_1 = curr_lon-(20/(LONGITUDE_CONV))

repositino the drone

if (direction == "LEFT"):
output = go_to(curr_lat, lon_l)
time.sleep(10)

elif (direction == "RIGHT"):

66

output = go_to(curr_lat, lon_r)
time.sleep(10)

elif (direction == "UP"):
output = go_to(lat_u, curr_lon)
time.sleep(10)

elif (direction == "DOWN"):
output = go_to(lat_d, curr_lon)
time.sleep(10)

elif (direction == "CENTER"):
print "already in the center of the pad"
return 1

print "moved towards landing location ", direction

return @

GPIG pin handler, will just check if a 1 is output indicating threat detected (Thread)
def check_GPIO():
global pipes_GPIO, gpio_high

while (1):
value = collect_output("GPIO", keys=["1"])
if not (value is None):
gpio_high = True
should_terminate = True
if should_terminate:

break

App handler, tell app to send request, break upon confirmation (Thread)
def check_APP():

global pipes_APP, is_confirmed, should_terminate

pipes_APP[0@].write("send\n")
while (1):
output = collect_output("APP", keys=["confirm"])
if not (output is None):
print 'done’
is_confirmed = True
should_terminate = True
if should_terminate:

break

if __name__ == "__main__":
with open("../email.txt") as email_file:
for line in email_file:
EMAIL_ADDRESS = line

break

setup()
time.sleep(20)
takeoff()
best_dir = initial_search()
if best_dir is None:
pass
else:
output = move_to_landing(best_dir)
while (output != 1):
best_dir = scan_image(mode="1locate")
output = move_to_landing(best_dir)
try decoding
is_landing = False
output = scan_image(mode="template"”, args={"idx": @, "lower": OPTIONS[@], "upper": UPPER})
if ("complete" in output):
result = scan_image(mode="decode", args={"idx": 0}).split("result")[1]
if int(result) > THRESHOLD:
is_landing = True
land()
if not is_landing:
output = scan_image(mode="template", args={"idx": 1, "lower": OPTIONS[1], "upper": UPPER})
if ("complete" in output):
result = scan_image(mode="decode", args={"idx": 1}).split("result")[1]
if int(result) > THRESHOLD:
is_landing = True
land()
if not is_landing:
pass
TODO abort msg
land()

start the GPIO/APP threads

#thread_app = Thread(target=check_GPIO, args=[])
#thread_app.daemon = True

#thread_msg = Thread(target=check_APP, args=[])
#thread_msg.daemon = True

check_APP()

gpio_high = False

is_confirmed = False
print 'reaching stopping point’
last_checked = time.time()

while(1):

keep throttle armed in case we need to take off quickly

68

if (abs(time.time() - last_checked)) > 4.0:
arm_throttle()

if (gpio_high):
takeoff(arm=False)

elif (is_confirmed):
land()
TODO shine_gpio led?

print 'tearing down now'’

teardown()

verification_testbench.py
import subprocess

import os

import sys

import time

from threading import Thread

from Queue import Queue, Empty

UPPER = 255
OPTIONS = [50, 65, 80]

proc_cv = None
pipes_cv = None
t_cv = None

gq_cv = None

Queueing
def enqueue_output(out, queue):
for line in iter(out.readline, b''):
queue.put(line)

out.close()

create the opencv shell to issue commands to
def setup():

global proc_cv, pipes_cv, t_cv, q_cv

proc_cv = subprocess.Popen(['bash'], stdout=subprocess.PIPE, stdin=subprocess.PIPE)

pipes_cv = [proc_cv.stdin, proc_cv.stdout]

g_cv = Queue()

t_cv = Thread(target=enqueue_output, args=(pipes_cv[1], q_cv))
t_cv.daemon = True

t_cv.start()

return True

close opencv pipes and exit the shell
def teardown():

global proc_cv, pipes_cv, t_cv, q_cv

for pipe in pipes_cv:
try:
pipe.close()
except:

pass

proc_cv.kill()

return True

look through the output (non-blocking using queue)
def collect_output(attempts=30, keys=[], flag="or", debug=False):
global g_cv

q =qg_cv
used_attempts = @
while (used_attempts < attempts):
try:
line = qg.get_nowait()
if debug:
print 'Discovered: '+line
found = False
if flag == "and":
found = True
for key in keys:
if not (key in line):
found = False
break
else:
found = False
for key in keys:
if key in line:
found = True
break
if found:
return line
except Exception as e:
pass

return None

if __name__ == "__main__":
setup()
testfile = "./tests.txt"

70

if testfile specified, override default
if (len(sys.argv) > 1):
testfile = sys.argv[1]

tmp_dest = "./tmp_out"

with open(testfile, 'r') as input_file:

successes = @

failures = 0

threshold = -1.0

firstLine = True

test_idx = @

for line in input_file:
read in threshold for success values
if firstLine:

threshold = float(line)

firstline = False

else:
run test case
print "Running Test {0}".format(test_idx)
(input_image, email_addr, should_normalize) = line.replace("\n", "").split("[|")
input_image = input_image.lstrip().rstrip()
email_addr = email_addr.lstrip().rstrip()
should_normalize = int(should_normalize)
print "Beginning Phase 0"
start clock
t0 = time.time()
failed = [True for x in xrange(len(OPTIONS))]
highest_acc = -1

try removing borders and rotating (multiple options for threshold for outliers)
for opt_idx in xrange(len(OPTIONS)):
pipes_cv[@].write("./template {0} {1} {2} {3}\n".format(input_image,
tmp_dest+str(opt_idx)+".png", OPTIONS[opt_idx], UPPER))
phase@_out = collect_output(attempts=100, keys=["missing", "invalid", "completed",
"failed"], flag="or", debug=False)
if (phase@_out is None) or ("missing" in phase@_out) or ("invalid" in phase®_out) or
("failed" in phase@_out):
continue
else:
failed[opt_idx] = False
if should_normalize:
pipes_cv[@].write("./normalize {0} {1}\n".format(tmp_dest+str(opt_idx)+".png",
tmp_dest+str(opt_idx)+".png"))
stop clock

71

print "Phase © Time: {0}".format(time.time()-t0)
start secondary clock
tl = time.time()
for opt_idx in xrange(len(OPTIONS)):
if (failed[opt_idx] is False):
try decoding
pipes_cv[@].write("./border N Y {0} {1} {2}\n".format(email_addr, input_image,
tmp_dest+str(opt_idx)+".png"))
phasel_out = collect_output(["invalid", "result"], "or")
accuracy of removing borders with this threshold
if "invalid" in phasel_out:
continue
result = phasel_out.split("result")[1]
os.remove(tmp_dest+str(opt_idx)+".png")

observed = float(result)

if (observed > highest_acc):
highest_acc = observed
print highest_acc
stop clock
print "Phase 1 Time: {0}".format(time.time()-t1)
print "Total Time: {@}".format(time.time()-t0)

if able to decode with high enough accruacy this is success
if (highest_acc > threshold):
successes += 1
else:
failures += 1
test_idx += 1
print "Correct: {0}, Failures: {1}, Accuracy: {2}".format(successes, failures,

(float(successes)/(successes + failures)))

teardown()

live_verification_locate.py
import subprocess

import sys

from threading import Thread
from Queue import Queue, Empty
from time import sleep

import cv2

proc_cv = None

proc_ci = None
pipes_cv = None
pipes_ci = None
t_cv = None

g_cv = None

Queueing
def enqueue_output(out, queue):
for line in iter(out.readline, b''):
queue.put(line)

out.close()

create the opencv shell to issue commands to
def setup():

global proc_cv, proc_ci

global pipes_cv, proc_ci

global t_cv, q_cv

proc_cv = subprocess.Popen(['bash'], stdout=subprocess.PIPE, stdin=subprocess.PIPE)

pipes_cv = [proc_cv.stdin, proc_cv.stdout]

proc_ci = subprocess.Popen(["exec ./stabilize ./test_capture.png"], stdin=subprocess.PIPE,

stdout=subprocess.PIPE, shell=True)

g_cv = Queue()

t_cv = Thread(target=enqueue_output, args=(pipes_cv[1], q_cv))
t_cv.daemon = True

t_cv.start()

return True

close opencv pipes and exit the shell
def teardown():

global proc_cv, proc_camera

global pipes_cv, pipes_camera

global t_cv, q_cv

for pipe in pipes_cv:
try:
pipe.close()
except:
pass
for pipe in pipes_camera:
try:
pipe.close()
except:

pass

73

proc_cv.kill()
proc_camera.kill()

return True

look through the output (non-blocking using queue)
def collect_output(attempts=30, keys=[], flag="or", debug=False):
global g_cv

q = q_cv
used_attempts = 0@
while (used_attempts < attempts):
try:
line = g.get_nowait()
if debug:
print 'Discovered: '+line
found = False
if flag == "and":
found = True
for key in keys:
if not (key in line):
found = False
break
else:
found = False
for key in keys:
if key in line:
found = True
break
if found:
return line
except Exception as e:
pass

return None

if __name__ == "__main__":
setup()
input_image = "./test_capture.png"

test_idx = @0

sleep(2)
while(1):
run test case
print "Running Test {0}".format(test_idx)

print "Beginning Phase 0"

74

try removing borders and rotating (multiple options for threshold for outliers)
pipes_cv[@].write("./locate {@}\n".format(input_image))
inp = cv2.imread(input_image)
phase@_out = collect_output(attempts=100, keys=["invalid", "LEFT", "RIGHT", "UP", "DOWN",
"CENTER", "failed"], flag="or", debug=False)
if (phase@_out is None) or ("invalid" in phase@_out) or ("failed" in phase@_out):
continue
else:
print phase@_out
try:
cv2.imshow("Captured Image", inp)
cv2.waitKey(©0)
cv2.destroyAllWindows ()
except:

print "skipping"

sleep(2)

test_idx += 1

teardown()

live_verification_decode.py
import subprocess

import os

import sys

from threading import Thread
from Queue import Queue, Empty
from time import sleep

import numpy as np

import cv2

import time

UPPER = 255
OPTIONS = [50, 65] #80]

proc_cv None
proc_ci = None
pipes_cv = None
pipes_ci = None
t_cv = None

g_cv = None

Queueing
def enqueue_output(out, queue):
for line in iter(out.readline, b''):
queue.put(line)

out.close()

create the opencv shell to issue commands to
def setup():

global proc_cv, proc_ci

global pipes_cv, proc_ci

global t_cv, q_cv

proc_cv = subprocess.Popen(['bash'], stdout=subprocess.PIPE, stdin=subprocess.PIPE)

pipes_cv = [proc_cv.stdin, proc_cv.stdout]

proc_ci = subprocess.Popen(["exec ./stabilize ./test_capture.png"], stdin=subprocess.PIPE,

stdout=subprocess.PIPE, shell=True)

g_cv = Queue()

t_cv = Thread(target=enqueue_output, args=(pipes_cv[1], q_cv))
t_cv.daemon = True

t_cv.start()

return True

close opencv pipes and exit the shell
def teardown():

global proc_cv, proc_camera

global pipes_cv, pipes_camera

global t_cv, q_cv

for pipe in pipes_cv:
try:
pipe.close()
except:
pass
for pipe in pipes_camera:
try:
pipe.close()
except:

pass
proc_cv.kill()
proc_camera.kill()

return True

look through the output (non-blocking using queue)

def collect_output(attempts=30, keys=[], flag="or", debug=False):
global g_cv

q = q_cv
used_attempts = 0@
while (used_attempts < attempts):
try:
line = qg.get_nowait()
if debug:
print 'Discovered: '+line
found = False
if flag == "and":
found = True
for key in keys:
if not (key in line):
found = False
break
else:
found = False
for key in keys:
if key in line:
found = True
break
if found:
return line
except Exception as e:
pass

return None

if __name__ == "__main__":
setup()
threshold = .60
email_addr = "hoaglan2@illinois.edu”
tmp_destl = "./tmp_outl-"
tmp_dest2 = "./tmp_out2-"
input_image = "./test_capture.png"

successes = 0
failures = @
test_idx = @
if len(sys.argv) < 3:

print "using default success threshold of .60 and email of hoaglan2@illinois.edu”

else:
threshold = sys.argv[1]

email_addr = sys.argv[2]

sleep(2)
while(1):
run test case
print "Running Test {@}".format(test_idx)
print "Beginning Phase 0"
start clock
start_time = time.time()
failed = [True for x in xrange(len(OPTIONS))]
highest_acc = -1

try removing borders and rotating (multiple options for threshold for outliers)
for opt_idx in xrange(len(OPTIONS)):
pipes_cv[@].write("./template {0} {1} {2} {3}\n".format(input_image,
tmp_destl+str(opt_idx)+".png", OPTIONS[opt_idx], UPPER))
phase@_out = collect_output(attempts=100, keys=["missing", "invalid", "completed", "failed"],
flag="or", debug=False)
if (phase@_out is None) or ("missing" in phase®_out) or ("invalid" in phase@_out) or ("failed"
in phase@_out):
continue
else:
failed[opt_idx] = False
perform normalization
pipes_cv[@].write("./normalize {0} {1}\n".format(tmp_destl+str(opt_idx)+".png",
tmp_dest2+str(opt_idx)+".png"))
phasel_out = collect_output(attempts=100, keys=["invalid", "success"], flag="or",
debug=False)
try:
original = cv2.imread(input_image)
except:
continue
end_time = time.time()
print "Time to complete {0}: {1} seconds".format(test_idx, (end_time - start_time))
cropped = []
normalized = []
for opt_idx in xrange(len(OPTIONS)):
if (failed[opt_idx] is False):
try:
n_cropped = cv2.imread(tmp_destl+str(opt_idx)+".png")
n_normalized = cv2.imread(tmp_dest2+str(opt_idx)+".png")
n_cropped = cv2.resize(n_cropped, (200, 200))
n_normalized = cv2.resize(n_normalized, (200, 200))
if n_normalized is None:
print tmp_dest2+str(opt_idx)+".png"
cropped.append(n_cropped)

normalized.append(n_normalized)

78

except:
pass
if len(cropped) > 1:
cropped_display = np.hstack(tuple(cropped))
print 'klo'
normalized_display = np.hstack(tuple(normalized))
cv2.imshow("Original Image", original)
cv2.imshow("Cropped Images", cropped_display)
cv2.imshow("Normalized Images", normalized_display)
cv2.waitKey(9)
cv2.destroyAllWindows ()
else:

sleep(2)

for opt_idx in xrange(len(OPTIONS)):
if (failed[opt_idx] is False):
try decoding
pipes_cv[@].write("./border N Y {0} {1} {2}\n".format(email_addr, input_image,
tmp_dest2+str(opt_idx)+".png"))
phasel_out = collect_output(["invalid", "result"], "or")
accuracy of removing borders with this threshold
if "invalid" in phasel_out:
continue
os.remove(tmp_destl+str(opt_idx)+".png")
os.remove(tmp_dest2+str(opt_idx)+".png")
result = phasel_out.split("result")[1]

observed = float(result)

if (observed > highest_acc):
highest_acc = observed

print highest_acc

if able to decode with high enough accruacy this is success
if (highest_acc > threshold):
successes += 1
else:
failures += 1
test_idx += 1
print "Correct: {0}, Failures: {1}, Accuracy: {2}".format(successes, failures,

(float(successes)/(successes + failures)))

teardown()

Gem_server.py

79

#Source code taken and modified from [15] <https://gist.github.com/vietkute02/9680901>

#!/usr/bin/python

import sys, json, xmpp, random, string
from subprocess import PIPE, Popen
from threading import Thread

from Queue import Queue, Empty

import datetime

SERVER = 'gcm.googleapis.com'

PORT = 5235

USERNAME = "632877030162"

PASSWORD = "AIzaSyBnar8mPqv6CmZ8gqOQBtUOOyq28nw2cwY"

REGISTRATION_ID = "d3Z--G_I1q@:APA91bE5qwn034sII-Sm5IkZdsUWNFNFBVQVjbcNKDDGcicjI9G7SCWmeuri7o_D99NlymrbLN-

J1byKcSrUFR2iW_-1jShrIILnX_2e0QBsrgBPHbO_ pALCc850HNX82U7iulvekDKi"
#REGISTRATION_ID =

"fkDwv41i0T74:APA91bFSC8ANDGgNnimD16DpWXV40g8cX1540j3x1uTPmgs8d0I43iU7sCwEMMO1jNqoILSHMD3VsZ3WGd-iuTaoH-

ab@oWz0ITbqztysUzURwvpCdMO2ww7BdciWgqsS4fHhPAPG_W91leB"

ON_POSIX = 'posix' in sys.builtin_module_names

unacked_messages_quota = 100

send_queue = []

#Determine current UTC time
def UtcNow():
now = datetime.datetime.utcnow()

return (now - datetime.datetime(1970, 1, 1)).total_seconds()

Return a random alphanumerical id
def random_id():
rid = "'
for x in range(8): rid += random.choice(string.ascii_letters + string.digits)

return rid

#Determine communication time if received message and print "confirm" message
def message_callback(session, message):
server_time = UtcNow()
gcm = message.getTags('gem')
if gem:
gecm_json = gcm[@0].getData()
msg = json.loads(gcm_json)
if("message_type" not in msg):

app_time = int(msg["data"]["time_test"])

print("Commnication took : + str((server_time-app_time)) + " seconds")
print("confirm™)

print(‘\n")

80

#Package data into json to send to app

def send(json_dict):
template = ("<message><gcm xmlns='google:mobile:data'>{1}</gcm></message>")
client.send(xmpp.protocol.Message(

node=template.format(client.Bind.bound[@], json.dumps(json_dict))))

#Process messages in queue
def flush_queued_messages():
global unacked_messages_quota
while len(send_queue) and unacked_messages_quota > 0:
send(send_queue.pop(9))

unacked_messages_quota -= 1

#client = xmpp.Client('gcm.googleapis.com', debug=["'socket'])

#Set up xmpp server
client = xmpp.Client('gcm.googleapis.com', debug=[])
client.connect(server=(SERVER,PORT), secure=1, use_srv=False)
auth = client.auth(USERNAME, PASSWORD)
if not auth:

print 'Authentication failed!'

sys.exit(1)

#Map server to message call back function

client.RegisterHandler('message', message_callback)

#Enqueue sends to queue
def enqueue_output(out, queue):
for line in iter(out.readline, b'"):
queue.put(line)

out.close()

Queue()
Thread(target=enqueue_output, args=(sys.stdin, q))

.daemon = True # thread dies with the program

+ + + QO
U}

.start()

#Contiously runs server, sending messages when "send" command is inputed by user
while True:
client.Process(1)

flush_queued_messages()

read line without blocking
try: 1line = g.get_nowait() # or qg.get(timeout=.1)
except Empty:

81

continue

if("send" in line):
send_queue.append({'to': REGISTRATION_ID,
'message_id': 'reg_id',

'data': {'message_destination':

'RegId’,

'message_id': random_id(),

"time_test': str(UtcNow())}})

gpio.c

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <pthread.h>

#include <unistd.h>

#include <string.h>

#include <time.h>

#include <wiringPi.h>

#include <wiringPiI2C.h>

#include <wiringSerial.h>

#include <lcd.h>

#include <iostream>

#include <thread>

82

void check(const int doppler, const int pirl, const int pir2);

bool analogCheck(const int doppler);

// Pin number declarations for ODROID-C1+

const int pirLeftFront = 2;

const int pirLeftBack = 3;

const int pirRightFront = 4;

const int pirRightBack = 5;

const int outputVar = 27;

#define PORT_ADC1 1

#define PORT_ADCO ©

bool outputVal = false;

int main(void)

wiringPiSetup();

pinMode(pirLeftFront, INPUT);

pinMode(pirLeftBack, INPUT);

pinMode(pirRightFront, INPUT);

pinMode(pirRightBack, INPUT);

pinMode(outputVar, OUTPUT);

digitalWrite(outputvar, LOW);

digitalWrite(pirLeftFront, LOW);

digitalWrite(pirLeftBack, LOW);

digitalWrite(pirRightFront, LOW);

digitalWrite(pirRightBack, LOW);

bool pLF, pLB, pRF, pRB, dL, dR;

while(1)

pLF = digitalRead(pirLeftFront);

pLB = digitalRead(pirLeftBack);

84

"\n';

//

//

//

//

//

pRF = digitalRead(pirRightFront);

pRB = digitalRead(pirRightBack);

dL = analogCheck(PORT_ADC1);

dR = analogCheck(PORT_ADCO);

std::cout << dR << std::endl;

std::cout << pLF << " " << pLB << " " << pRF << " " << pRB << " " << dL << " " << dR <«
if(pLF == true || pLB == true || dL == true)
{

std::cout << "potential threat, left" << '\n’';

check(PORT_ADC1, pirLeftFront, pirLeftBack);

}

if(pRF == true || pRB == true || dR == true)

{
std::cout << "potential threat, right" << "'\n';
check(PORT_ADCO, pirRightFront,pirRightBack);

}

if(outputval == true)

85

std::cout << "entering infinite loop" << std::endl;

while(1){

std::cout << "in the loop" << std::endl;

digitalWrite(outputVar, HIGH);

delay(500);

digitalWrite(outputVvar, LOW);

delay(500);

digitalWrite(outputVar, HIGH);

delay(500);

digitalWrite(outputVvar, LOW);

delay(500);

digitalWrite(outputVar, HIGH);

digitalWrite(outputVvar, LOW);

}//break;

void check(const int doppler, const int pirl, const int pir2)

bool loopDecide;

if(analogCheck(doppler) == true)

loopDecide = false;

else

loopDecide = true;

time_t start, end;

time(&start);

end = start;

if(loopDecide == false)

while(difftime(end, start) < 2)

if(digitalRead(pirl) == HIGH || digitalRead(pir2) == HIGH)

87

outputVal = true;

break;

time(&end);

}
}
else
{
while(difftime(end,start) < 2)
{
if(analogRead(doppler) == true)
{
outputVal = true;
break;
}
time(&end);
}
}

88

bool analogCheck(const int doppler)

int adcval;

adcVal = analogRead(doppler);

//printf("%d\n", adcval);

std::cout << adcval*1.8/1024.0 << '\n';

if(adcval*1.8/1024.0 > 1.6){return true;}

return false;

89

