Final Report for ECE 445, Senior Design, Spring 2014
TA: Mustafa Mukadam
May 2014
Project No. 53
Shanoon Martin
Jialin Sun
Manfei Wu
By

MAGIC WAND BATTLE GAME

Abstract
In our project, we built a Magic Wand Battle Game. In the game every player will be equipped with a wand and a hit sensor. The wand will send out gestures representing different spells and send out the signal to the Micro Controller and Hit Sensor will detect whether the player is hit or not. As for the wireless communication, all of the signals transmit through a point-to-multipoint Network set up by the Xbee. There are multiple transmitters and only one receiver in this system.
This game can be played indoors and outdoors because sunshine will not interfere with the signals. And players can play the game in a wide range. We believe this game could bring more fun and more exercise to kids.

Contents
1	Introduction	1
1.1	Statement of Purpose	1
1.2	High Level Block Diagram	1
1.2.1 Wands	2
1.2.2 Hit Sensor	2
1.2.3 Main Microcontroller Receiver	2
1.2.4 User Interface	2
2	Design	3
2.1 Wands	3
2.1.1 IMU	3
2.1.2 Ultrasound transmitter	5
2.1.3 Button Activation	6
2.2 Hit Sensor	6
2.3 Main Receiver	7
2.3.1 Wireless Network Configuration	7
2.3.2 Programming the Raspberry	8
2.4 User Interface	9
3	Design Verification	10
3.1 Wands	10
3.2 Hit Sensor	11
3.3 Main Receiver/Wireless Communication	12
3.4	Power Budget	12
4	Costs	14
4.1 Parts	14
4.2 Labor	14
5	Conclusion	15
5.1 Accomplishments	15
5.2 Uncertainties	15
5.3 Ethical considerations [11]	15
5.4 Future work	16
Works Cited	17
Appendix A	Wand’s Components Connection	18
Appendix B	Ultrasound connection	19
Appendix C	 XBEE details	20
Appendix D	Requirement and Verification Table	21
Wands	21
Receiver	23
Hit Sensor	24
User Interface	24
Appendix E 	Game Flowchart	25

1 [bookmark: _Toc387232844]Introduction
	We designed a wide range game that use the technology of motion detection and concept of wide range game such as laser tag to open up a new area in the gaming industry.
1.1 [bookmark: _Toc387232845]Statement of Purpose
There are motion-detection games like Kinect or Wii, and there are wide range games like laser tag. However, there is no game that combines those two characteristic altogether. Thus, we decided to make a game that utilizes those two functionalities.
We had the idea from the best-selling fiction novel Harry Potter that depicts a lot of magic wands battle scene. There are already a lot of replica wands in the market, some of them are mere toy stick and some others enable laser-shooting capability to make it similar to laser tag. Yet, we want to take this idea to another level. We believe having gesture recognition in controller (i.e. wands in this case) in a portable game is a valuable technology that has many applications. The portability also promotes physical interaction between players and engaging physical activity outdoor, so it will have a breakthrough from the current gaming industry where it is mostly activity done indoor.
1.2 [bookmark: _Toc387232846]High Level Block Diagram
There are four main modules for this project: Wands, Hit Sensor, Main Microcontroller Receiver, and the User Interface.
[image:]
Figure 1	high level block diagram
[bookmark: _Toc387232847]1.2.1 Wands
	This module consists of Inertial Measurement Unit (IMU) sensor, ultrasound receiver, microcontroller, and a XBee. IMU Sensor is the key part in the motion detection technology because it senses the tilting and orientation of the device. The data read from the sensor will then be transmitted to the Arduino microcontroller for data processing of the gesture validity. The result of the algorithm for gesture recognition will be sent wirelessly via XBee to the main microcontroller receiver. Ultrasound transmitter works as the attacking component of the wand that is continuously emitting ultrasonic ray over the range of game.
[bookmark: _Toc387232848]1.2.2 Hit Sensor
	The key component in this module is the ultrasound receiver circuit that is responsible for the detection of incoming attack from other player. Once the player is hit per the receiver circuit detection, it will send a signal indicating player is hit to the main microcontroller receiver. The Arduino microcontroller in the hit sensor is used for distinguishing the XBee transmission from one player to the rest, because our game use the network of multiple points to point connection which will be explained more in the next chapter.
[bookmark: _Toc387232849]1.2.3 Main Microcontroller Receiver
	The wirelessly received signals from different player’s wand and hit sensor are processed here, thus we are using a Raspberry Pi that is capable of doing more extensive computation as the microcontroller. This receiver should run in real time and compute all of the players scores based on the attack type each player received.
[bookmark: _Toc387232850]1.2.4 User Interface
	Another reason we are using Raspberry Pi in the Main Microcontroller Receiver module	is for a more user friendly environment. The user interface will show the updated score and indicate the start and end of a game.

2 [bookmark: _Toc387232851]Design
	We will talk about the designs based on the division of block diagram shown in figure 1. The complete game flow is shown in appendix D.
[bookmark: _Toc387232852]2.1 Wands
	IMU sensor is the key component of the wand’s module because it is used for the gesture recognition. The XBee connection will be explained more in the Receiver part, and the connection of our wand can be seen in Appendix A.
	Our initial design is to combine the ultrasound, IMU, and XBee with the microcontroller that we build ourselves using the Arduino chip. However, there are couple of bugs that we cannot figure thus we change it to using the Arduino board instead.
[bookmark: _Toc387232853]2.1.1 IMU
 There are three steps in integrating the sensor to our project:
1. Understanding the data
2. Filtering the data
3. Gesture recognition algorithm
Understanding the data
	To understand the data, we must first understand how IMU collect the data. IMU consists of accelerometer and gyroscope. Accelerometer is used for sensing static and dynamic acceleration, which can be translated into tilt sensing. Gyroscope can detect angular velocity which is used for orientation sensing. The IMU sensor we are using is the MPU6050 that has tri-axis accelerometer and gyroscope. Tri-axis means that the data will be sampled at x, y, and z axis, so we essentially are left with a total of 6 data per sample.
	The data are transmitted with the I2C protocol to the microcontroller. We will get 6 raw data that we need to divide by the corresponding sensitivity number and then process it to the filtering part. Each IMU sensor comes with different sensitivity number, and we could also change the sensitivity range of the sensor [1].
· Gyroscope Sensitivity Full-Scale Range: ±250o/s, ±500o/s, ±1000o/s, ±2000o/s
· Accelerometer Sensitivity Full-Scale Range: ±2g, ±4g, ±8g, ±16g
Sensitivity full scale range indicates the range of data the IMU can sample at one time. The smallest the data range is the more sensitive it is to small movement. Thus, we are choosing the smallest range because we do not need to make a big and fast gesture for the game. Each sensitivity range has a sensitivity factor that we need to take into account, so each data is divided by the corresponding factor after it is sampled.
Filtering the data
	The main reason we need to filter out the data is that because gyroscope drift over time. In a short term of time, gyroscope has less noise than accelerometer and in the long term accelerometer data is more accurate. Thus, we need to find a way to combine the data and remove the noise to get the accurate measurement value of device orientation.
There are two general filters for IMU, a Complementary Filter and a Kalman Filter. Complementary Filter is easier because it assumes the noise in the device is constant over time. The formula for Complementary filter is shown as follow:
	 [2]
	(1)

	The x and y value are constant to be determined by the developer, and the sum of x and y should be equal to 1. The gyroscope data is integrated every time step with the previous angle value and then combined with the accelerometer data to get the current angle value. However the value from complementary filter is susceptible to the changing noise, thus we decided to use the Kalman filter.
	Kalman filter gives out a better result because it computes and updates both the noise and actual measurement value every time the data is sampled. It is using state space model and has two distinct set of equations, time update and measurement update. The key concept of Kalman filter equations is that every signal value is a linear combination of the previous signal value and process noise. Also, the measurement value is a linear combination of the signal value and the measurement noise. Since we have the two value from predicted and measurement equations, we need to update the predicted value based on the measurement value. The detailed process flow in Kalman Filter is showed in the figure 2.
[image:]
Figure 2 Kalman Filter steps [3]
Gesture Recognition Algorithm
	We are using a machine learning algorithm called the perceptron algorithm in for the gesture recognitions. Perceptron is a binary classification learning algorithm, which means it can only detect two different movements. Thus, we need to implement the multiclass perceptron algorithm. There are three important terms for this algorithm:
· Feature vector (f(x)): a vector that records the frequency of multiple different data from the filtered data sets.
· Weight vector (w): a specialized vector that is used for identification for each different class.
· Activation sum: the dot product between one weight vector and one feature vector which result determine which class the feature vector belongs to.
The first step of multiclass is the learning for each class to acquire the weight vectors. We do the learning with 10 sets of data for each class. For this project we are making three different movements to be recognized, thus we have a total of 30 data sets and three weight vectors to acquire. We put the actual class of movement in the same order of the sampled data sets in another vector and initialized the weight vectors to zero. The steps of learning for each data sets are shown as followWhen the prediction is right, the algorithm will do nothing and move on to the next data.
prediction is wrong

After we had the proper weight vector for each class, we will hardcode the value to the Arduino on our wand. The Arduino will find the activation result of current sampled movement’s feature vector for each weight vector. Since we need to detect “invalid movement” also, we put an acceptable range of activation result for each class after we find the maximum value out of the three activation result. Outside of that range, all of the movement will be detected as invalid. Then, the result of what move detected is transmitted over XBee to Raspberry Pi main microcontroller receiver.
[bookmark: _Toc387232854]2.1.2 Ultrasound transmitter
The ultrasound transmitter is always on and transmitting the ultrasonic ray, thus the processing of the player’s hit detection happens in the main microcontroller receiver.
The ultrasound transmitter we use is the MaxSonar EZ4 shown below. We chose this product for several reasons. First it can provide very short to long-range detection and ranging. The LV-MaxSonar – EZ4 detects objects from 0-inches to 254-inches (6.45meters) and provides sonar range information from 6-inch out to 254 inches with 1-inch resolution [4].
Secondly, it has a narrow beam or high sensitivity (shown in figure 3 right). Thirdly, EZ4 is easy to set up. Connect its Vdd to 5V and GND to 0V and it will send out ultrasonic waves automatically.
[image:]
figure 3 (left) MaxSonar EZ4 (right) beam explanation [4]
[bookmark: _Toc387232855]2.1.3 Button Activation
	Every movement is sampled with the same sample size of 200 datasets. To ensure the data sampled is from the movement one player makes, every player needs to press the button before making the movement. The code in the Arduino will wait for an interrupt from the button press before start sampling the data and transmit the data sets.
[bookmark: _Toc387232856]2.2 Hit Sensor
At first we considered infrared lights for positioning, but our goal is to design a portable game that can be played outdoors, and infrared lights will be interfered by the sunlight, so we moved on to sound waves. Also ultrasonic devices are known for its accurate at positioning so that is our final choice.
Our initial design also does not have a microcontroller in it, but we figure that the XBee configuration is easier when you add a microcontroller that can control the XBee configuration. Thus, we add an Arduino board in the circuit, as shown in appendix B.
For the ultrasonic receiver, the schematic is shown below.
[image: ultrasonic receiver schematic.png]
Figure 4 ultrasonic receiver schematic [5]
It is made up of 3 stages of amplifiers. The first and third stage has high gains and all the BJT transistors and biased in saturation mode. Capacitors are coupled between stages to get rid of DC components. At the end of the final stage there is a comparator. If V+ is greater than V-, the output is high, otherwise it is low, so we will have a square wave at the output. Also, V- can be adjusted by biasing resistors to be able to detect shorter or wider range.
[bookmark: _Toc387232857]2.3 Main Receiver
[bookmark: _Toc387232858]2.3.1 Wireless Network Configuration
Design Theory
	The system of multiple transmitters and one receiver is a Point-to-Multipoint Network. The main receiver knows the address of each transmitter in order to distinguish the message sender.
XBee can support point-to-multipoint network and the transition distance is 100ft(30m) indoor and 300ft(90m) outdoor [6]. The transmit mode sequence of XBee shown in Figure.3 presents that the system can be unique, and not interfere with other wireless systems. So in the whole communication system, we need to set up all the transmitters and receiver with the same PAN ID (Personal Area Network ID) using an AT command ATID. Each transmitter should have its own address using ATMY. All the transmitters need to set the destination address with the address of the receiver, use ATDL command. Finally, command ATWR save all the parameters and ATCN to exit [7].
	In order to distinguish each transmitter’s address, we design to use the source address in RX (Receiver) Packets. After the receiver gets the message package, it extracts the source address information from the message to identify the transmitter. The transmit mode sequence and RX packet frame is in Appendix B.
Final Design
	All the transmitters should be set with the same source address means that the number of ATMY should be same. Otherwise, the system cannot work. We cannot figure out the source address through the RX Packet in this statement. So we added a microcontroller (Arduino) in each Hit Sensor in order to create address information to each transmitter.
	The two transmitters in a player have the same address information through the Arudino. For example, player A has the additional information is 1 in the message in both transmitters, while other player B has the number 2 embedded in the message, and other players will also have their own specific numbers.
This is also easier for the receiver part to read the new source address of each transmitter. This also improves the speed of the main microcontroller by outsourcing part of its work to other components. The parameters of transmitters and receiver are shown in Table.1.
	Transmitters
	Receiver

	ATID 40
	ATID 40

	ATMY 1
	ATMY 2

	ATDL 2
	ATDL 1

Table.1 Parameters Of Transmitters and Receiver

[bookmark: _Toc387232859]2.3.2 Programming the Raspberry
For the main receiver, we chose Raspberry Pi. Raspberry Pi itself is a small computer and we can use python for coding. It also has pygame library to make display easier. Raspberry Pi is more powerful than Arduino. It is faster and easier to have its own user interface, so no computer is needed.
As for the connection between Raspberry Pi and Xbee, we need to enable the serial input of RPi. First download a Serial package online by using
sudo apt-get install python-serial
and using the following code for testing:
[image: Screen Shot 2014-05-01 at 10.02.49 AM.png]
Figure 5 Xbee Setup in Raspberry Pi [8]
when we see the incoming signals coming from the IDLE screen of RPi, we know the connection is set successfully. Also, Xbee needs adapter to make it be able to connect to RPi.
[bookmark: _Toc387232860]2.4 User Interface
For the game logic, we used python and imported the pygame library to make things easier. There is a class player(), which contains the hit points of this player, self.hit to indict whether the player is hit or not: if it is 0 then the player is not hit, otherwise it is hit. And we have another self.move variable to show which of the three movements is detected. Please refer to the appendix for the actual code. To clarify, we set the incoming signal representing hit to be 111 and another one or few digits. If it is 1110 player1 is not hit. If the digits following 111 are not 0 then he is hit. And it is the same for player2. For the movements we have “111move” or “222move” followed by 1,2,3 and 0 stands for non-valid movements. To make our game truly portable, we have a touchscreen that can display the desktop of the Raspberry Pi.

[image: raspberry_pi_touchscreen.jpg]
Figure 6 Touchscreen Display for Pi [9]
First, solder the PiTFT 2.8” touchscreen to female header. Then make sure your software is updated, download the multiple files by running several commands that you can find on Adafruit. All of the steps to establish the connection between Pi and the touch screen device is available in source [9].

3 [bookmark: _Toc387232861]Design Verification
The complete details of requirement and verification will be attached at the end of the report in Appendix D.
[bookmark: _Toc387232862]3.1 Wands
	Since the IMU is the most important component in our design, we need to ensure that it is working fine. First we test the configuration in the x,y,z axis and see if the output of accelerometer and gyroscope matches the orientation characteristic on each axis. Then, we test if the Kalman filter is properly working by rotating the device on one axis and see if it is giving the correct output.
[image:]
Figure 7 Rotation around X axis from 0-90 degree for the IMU, as we can see the cos(X) and sin(X) varies from 1 to 0, whilefor Y angle it constantly stays at 0 degree
	Algorithm correctness is also a main requirement in the wand’s gesture recognition. A sample run with 21 sets of different data, predicted value, and actual value is shown in figure 8.As we can see, the sampling is very accurate.
[image:]
Figure 8 Algorithm computation.
Since feature vectors collect the frequency of the data occurrence, we should not lose too many data during wireless transmission to ensure an accurate prediction of the move. The threshold for a better algorithm computation is around 15%-20% of loss. Thus we verified our network by transmitting 200 data at a time and see how many will be lost. The average loss we computed is lower than 5%, hence the wireless connection is stable enough for the data transmission.
The ultrasonic and XBee module in the wands will be verified altogether in the next section.
[bookmark: _Toc387232863]3.2 Hit Sensor
For the Ultrasonic transmitter and receiver pair:
Set the ultrasonic pair in line and 5 meters away from each other, power them on, connect the output signal of the ultrasonic receiver to the oscilloscope. We have the following output.
[image: scope_0.bmp]
Figure 9 output from oscilloscope
We also need to send the signal to the main receiver, so we need to see the output from Arduino. Next we connect the receiver to Arduino digital pin 7. Vdd to 5V, GND to GND. The “111” in front of the received value is the code of the hit sensor, and if the digit following is non-zero that it means the receiver detects the coming ray from the transmitter
[image: Screen Shot 2014-05-01 at 8.32.41 PM.png]
Figure 10 Arduino Serial Port Output
[bookmark: _Toc387232864]3.3 Main Receiver/Wireless Communication
	The transmission distance of XBee is 100ft(30m) indoor and 300ft(90m) outdoor [1] which is shown in the datasheet of XBee. During the test, the indoor distance is 33ft(10m) at least. The signal still can be received when the transmitter and receive XBees 10 meters away after the point-to-point Network is built. The terminal in the receiver part is shown in the left of Figure.6, the right part is the XBee in the Receiver part.
[image:]
Figure 11 Receiver Xbee showing the received package
	Each player has two transmitters and there are two players in our game, so there will be at least four transmitters in this game. The receiver can receive signals sent from the four transmitters and be able to tell which sensor sends out the signal. Each one more player will need two more transmitters added into the communication system.
3.4 [bookmark: _Toc387232865]Power Budget
We design to use 9V Li battery as the Wands and Hit Sensor’s power. The main receiver, which is Raspberry Pi can be supported by a PC USB port or rechargeable battery directly. The power of each part is calculated below. The power parameter of each component is shown in Table 2. As Figure 10 shows, the 9V battery that we chose can support at most 2 hours for the game, because we want it to supply at least 7V of potential to the circuit.
	
	Arduino
	Raspberry Pi
	XBee
	IMU
	Ultrasound

	Power (mA/Hour)
	50
	500
	50
	4
	3

					Table 2
· Hit Sensor/hour:	
· Wand/hour :		

· Receiver/hour: 		

[image:]
Figure 12 Energizer LA522 power discharge [10]
	

4 [bookmark: _Toc387232866]Costs
[bookmark: _Toc387232867]4.1 Parts
	Table 3 Parts Costs

	Part
	Manufacturer
	Retail Cost($)
	Bulk Purchase Cost($)
	Actual Cost($)

	Raspberry Pi
	BROADCOM
	79.99
	79.99
	79.99

	Ultrasound transmitter
	MaxSonar
	35.99
	35.99
	71.98

	Ultrasonic receiver
	engineeringshock
	15.50
	15.50
	31.00

	IMU
	Kootek
	5.98
	5.98
	11.96

	Arduino
	ARDUINO
	27.99
	27.99
	111.80

	XBee S1
	Digi International Inc
	28.95
	28.95
	144.75

	XBee Adapter Kit
	Adafruit
	10.00
	10.00
	10.00

	FTDI Cable
	Sparkfun
	17.95
	17.95
	17.95

	User Interface
	Adafruit
	34.95
	34.95
	34.95

	9V Battery
	Energizer
	8.42
	8.42
	33.68

	Total
	
	
	
	548.06

[bookmark: _Toc387232868]4.2 Labor
					Table 4 Labor Cost
	Name
	Hourly Rate
	Time Invested (Hours)
	Total=Hourly Rate 2.5Time Inversted

	Shanoon Marti
	$30
	200
	$15,000

	Jialin Sun
	$30
	200
	$15,000

	Manfei Wu
	$30
	200
	$15,000

	Total
	
	600
	$45,000

Total Product Cost: 	$45,549.00

5 [bookmark: _Toc387232869]Conclusion
[bookmark: _Toc387232870]5.1 Accomplishments
	We are able to accomplish our initial motivation which is the wide range portable playing game. The gesture recognition works fine with three moves and at least 80% of accuracy during the game. The ultrasonic module and the wireless connection via XBee module realize the concept of wide range of at least 10m and flexible playing ground for the game. We manage to put everything together and make a working game out of it.
[bookmark: _Toc387232871]5.2 Uncertainties
There are still some problems remained. The calibration time for the ultrasonic device is pretty long. The possible reasons may be the power supply. The ultrasonic receiver consumes rather large power and the connection between the wires may also give us problems.
On the other hand, the RPi might freeze after some time and we need to reboot it from time to time. A quicker way to restart the game when RPi freezes is to change to another desktop and start the program again. The touchscreen is not perfect either. We can either use a mouse to control to use a laptop screen to display.
[bookmark: _Toc387232872]5.3 Ethical considerations [11]
1. In this project the power budget is a main concern. we would need 1375mA per hour for the worst case. If we use un-recyclable batteries if would cause a lot of energy waste. So to improve our projects we would change to recyclable batteries in the future.
“To accept responsibility in making decisions consistent with the safety, health and welfare of the public, and to disclose promptly factors that might endanger the public or the environment.”

2. In our battle game, the gesture detection has about 80% accuracy. We still have a lot to improve in the future, but we are honest with our data.
“To be honest and realistic in stating claims or estimates based on available data;”

3. With this project, we are combining our separate skills to design this system. In the process, we will learn how each other has achieved the desired design of the system and keep in mind how the project may be used.
“To improve the understanding of technology, its appropriate application, and potential consequences”
4. We have a clear work division and milestone for each member. We also hold weekly meeting to see the progress and discuss any difficulties each team member has.
“To seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to credit properly the contributions of others.”
5. “To assist colleagues and co-workers in their professional development and to support them in following this code of ethics.”
We worked on this project to apply our knowledge we've studied and apply it in the best possible way we can. We actively sought help and criticism from our teammates, students, staff, and professors and applied that criticism in many ways, including our design review, parts and demo. Our project was successfully and we need to thank all of them. Finally, we hope that this project has been well documented and will provide assistance to those who would ask of it while supporting these same codes of ethics in guidance to them.
[bookmark: _Toc387232873]5.4 Future work
	There are a lot of improvements we could do for the project to look more well-rounded. First, to do a better gesture recognition, we need a stronger computation chip to support the complexity of the algorithm. We are detecting the movement based on a cluster of data that records the x and y degree of the device orientation, but we did not include the ordering of the data which is important for an accurate gesture recognition. We chose Arduino Uno for its sizing purpose to fit the portable concept of our game, but it cannot support harder algorithm than perceptron. Besides implementing a harder algorithm, stronger computation chip can also support movement calibration for each user before the game starts to record the different characteristic people have.
Also, we need to fix the uncertainty of unstable ultrasound receiver. Having a sensitive hit sensor is important for a smoother flow in the game. We also need to integrate the Arduino chip into the design instead of using the board to make it more comfortable to put on the player’s body and decrease the cost of the game.
Last but not least is configuring the user interface and main microcontroller receiver part to have a more user friendly environment. We are able to display the game’s score in the portable LCD display attached on Raspberry Pi, but we would like to add more functionality such as player can program their own move, adding defenses and varieties in the spells, and enable another kind of game to run on this device. We believe a wide variety of games can fit into our device fine, and we think this technology could also be applied to other industry such as medical or military.

Works Cited

[1] 	invenSense, invensense, 19 08 2013. [Online]. Available: http://www.invensense.com/mems/gyro/documents/PS-MPU-6000A-00v3.4.pdf. [Accessed 1 2 2014].
[2] 	Pieter-Jan, 26 04 2013. [Online]. Available: http://www.pieter-jan.com/node/11. [Accessed 1 3 2014].
[3] 	B. Esme, 03 2009. [Online]. Available: http://bilgin.esme.org/BitsBytes/KalmanFilterforDummies.aspx. [Accessed 03 04 2014].
[4] 	MaxBotic, "LV-MaxSonar -EZ4TM High Performance Sonar Range Finder," MaxBotic Inc, 2005.
[5] 	M. P, "The 40kHz Ultrasonic Transducer Receiver DIY Kit," [Online]. Available: http://www.engineeringshock.com/40khz-ultrasonic-transducer-receiver-kit.html. [Accessed 05 2014].
[6] 	zigbee, "Sparkfun," Zigbee, 23 09 2009. [Online]. Available: https://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf. [Accessed 02 02 2014].
[7] 	ECE445, "XBee Tutorial," UIUC, [Online]. Available: http://courses.engr.illinois.edu/ece445/wiki/?n=Topics.XbeeTutorial. [Accessed 03 2014].
[8] 	LuCuS, "Add XBee to Raspberry Pi with Python," prodigy production llc, 13 07 2013. [Online]. Available: http://www.prodigyproductionsllc.com/articles/programming/add-xbee-to-raspberry-pi-with-python/. [Accessed 10 04 2014].
[9] 	L. Ada, "adafruit," 29 11 2013. [Online]. Available: https://learn.adafruit.com/adafruit-pitft-28-inch-resistive-touchscreen-display-raspberry-pi/software-installation. [Accessed 04 2014].
[10] 	Energizer Holding, Inc, "Energizer LA522 Product Data Sheet," [Online]. Available: http://data.energizer.com/PDFs/la522.pdf. [Accessed 04 2014].
[11] 	Institute of Electrical and Electronics Engineers, Inc, "IEEE Code of Ethics," [Online]. Available: http://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed 05 2014].

[bookmark: _Toc387232875]Appendix A	Wand’s Components Connection

Table 5 Interface of Wand
	Arduino Pin
	IMU Pin
	Ultrasound Transmitter Pin
	XBee Pin
	Button

	Power-3.3V
	
	
	1-Vcc
	

	Power-5V
	Vin
	5V
	
	

	Digital-2
	
	
	2-DOUT
	

	Digital-3
	
	
	3-DIN
	

	Digital-5
	
	
	
	1-Vout

	Digital-GND
	GND
	
	
	

	Analog-A4
	SDL
	
	
	

	Analog-A5
	SCL
	
	
	

	Power-GND
	
	
	10-GND
	GND

	Power-GND
	
	GND
	
	

[image:]
Figure 13 Graphical connection in the Wands
[bookmark: _Toc387232876]

Appendix B	Ultrasound connection
Table 6 Interface of Hit Sensor
	Arduino Pin
	Ultrasound Receiver Pin
	XBee Pin

	Power-3.3V
	
	1-Vcc

	Power-5V
	3-5V-9V
	

	Digital-2
	
	2-DOUT

	Digital-3
	
	3-DIN

	Digital-7
	2-VOUT
	

	Power-GND
	
	10-GND

	Power-GND
	1-GND
	

[image:]
Figure 14 Hit Sensor connection configuration

[bookmark: _Toc387232877]Appendix C	 XBEE details
[image:]
Figure 15 XBee Transmit Mode Sequence [6]
[image:]Figure 16 RX Packet (16-bit address) Frames [6]

[bookmark: _Toc387232878][bookmark: _GoBack]Appendix D	Requirement and Verification Table
[bookmark: _Toc381698146][bookmark: _Toc387232879]Wands
	Requirement
	Verification

	1. IMU chip can detect the acceleration and tilting angle on x y z axis.
a) accelerometer z axis measurement is working.
b) accelerometer x axis measurement is working
c) accelerometer y axis measurement is working
d) gyroscope z axis measurement is working
e) gyroscope x axis measurement is working
f) gyroscope y axis measurement is working

2. Working and stable connectivity for the wands and receiver, data loss should not be over 20%

3. Ultrasonic sound emitter can send ultrasonic sound waves with intensity strong enough to detect in a distance range of 0.1-6.45m

4. Algorithm computation speed with communication protocol
a) Two wands should be able to detect gesture correctly at the same time
b) XBee communication to different wands should not interfere with each other

5. Power supply should be enough for the wand components, each components beside Arduino received 5V ± 10% V, Arduino should receive 9V± 10% V

6. a) Xbee chip can enable a communication system between receiver and users

b) Xbee chips can support the network for more than 2 multiple users communication with one main receiver

c)Xbee chips will not allow communication around users in the network

d) Xbee chips can distinguish the source which the signals come from
	1. Once the wand’s PCB is ON, we keep the wand stable in two axis and rotate around one axis. The simulation result should show rotation and acceleration at one axis and the other two axis data should be stable.
a) Lay IMU stable on the table (or any flat surface, lying up or lying down), the accelerometer result for z axis should be ±1g (±16384 without the scale factor), and the rest should be <<<0g (<<<-16384).
b) Put the IMU perpendicular to the table, with the IMU facing ±x direction. The accelerometer result for x axis should hold the same value as z axis in a, ±1g, and the rest should be ~0g.
c) Put the IMU perpendicular to the table, with the IMU facing ±y direction. The accelerometer result for x axis should hold the same value as z axis in a, ±1g, and the rest should be ~0g.
d) Let the IMU rotate around z axis, trying to keep x and y axis constant on the initial position. The max and min value read should be between ±31750 (±500o/s)
e) Let the IMU rotate around x axis, measurement should hold the same result as d.
f) Let the IMU rotate around y axis, measurement should hold the same result as d.

2. Receiver could get data gesture detection data when the wand is on, and the wand should also be able to receive further instruction from the receiver (two-ways communication). Send a command from our main microcontroller receiver to the wand to turn on and off the LED on Wands. the Wands should be able the LED on and off even while player is running around. When the main receiver stop sending that command, the wand’s LED should stop blinking also.
Xbee maximum data transmission rate is 250Kbps, while the SCL of the Arduino is set to 100 kHz which means less than 100Kbps, so Xbee transmission rate is fast enough to support their data transmission. To further check the correctness of data, we can read the data on the wand’s IMU buffer by connecting it to the computer and compare with the value received on the receiver XBee side. Data loss is less that 5%.

3. Set the transmitter and receiver from 0.1 meter away from each other and increase the distance to 6m, connect them to the power supplies and the receiver also to an oscilloscope. Make sure they stand in a line. Let the transmitter send out ultrasonic waves. See if the oscilloscope reads analog signals or not. If there is signal, the requirement is met.

4. After ensuring each data is transmitted correctly from the last point verification, we want to ensure the algorithm from main receiver side to our wand is efficient.
a) Two wands make correct but different gesture at the same time, the main receiver should be able to detect the correctness of both wands almost simultaneously (less that 1s) within accuracy of 98% of implemented algorithm
b) Two wands make different gesture at the same time, one correct and one wrong gesture. Main receiver should be able to distinguish the XBee address of the wrong wand and the correct wand, then send the command to make the LED beep on the wrong gesture wand. The wand that make right gesture should not have LED beeping
5. Turn the wand On and measure each component’s voltage. Measure each component beside Arduino received voltage between 4.95V to 5.05V. Arduino should receive 8.1 V to 9.1 V.

6.
a) Set up Xbee chips. Send a signal , for example 0.2V, from one chip, and then check the received signal from the receiver side. Check if they are the same

b) Set all Xbee chips with the same PAN ID. Check the destination address in the outgoing package, if it is the same as the XBee address in the receiver side.

c) Set the destination addresses of users of different addresses. Send the signal from one user, and check the receiver if it receives the signal or not. If the signal is not received then the requirement is met.
d) Set a marker in each user’s signal package. Send signals from the each user one by one. The micro controller will detect which user it comes from correctly.

[bookmark: _Toc381698147][bookmark: _Toc387232880]Receiver
	Requirement
	Verification

	1. Enable a wide range communication system

2. Support the point to multiple point connection for the wands
	1. When the game is ON, the wand should be able to communicate with the receiver within the distance 20m
2. Set the main receiver XBee as master, and it should be able to communicate with each wand with a fix interval of time. Data transmission of each wand is established if the master XBee can send and request data from the slave XBee. Transmission of each slave to master is not interfering with each other if the master can send beacon in fix interval with different slave XBee information.

[bookmark: _Toc381698148][bookmark: _Toc387232881]Hit Sensor
	Requirement
	Verification

	1. Ultrasonic sound wave receiver will receive ultrasonic wave with accuracy about 5 centimeters

2. Receiver should have sizes no more than 2cm * 2cm for proper wand sizing

3. DC power supply should be 5V.

4. Xbee requirement is the same with the wand

	1. Move the receiver 2 centimeters away from the position where it is in line with the transmitter. Repeat the sending procedures and exam the oscilloscope.
2. Measure the length and width of the ultrasonic board. If they are less than 2 centimeters, the requirement is met.
3. Use multi-meters to measure the DC power supply, if it is no greater than 5.5V the requirement is met.
4. Please refer to the wand part for Xbee verification

[bookmark: _Toc381698149][bookmark: _Toc387232882]User Interface
	Requirement
	Verification

	1. Player’s score should be calculated correspondingly
	1. When the Game starts, the user interface should be able to show the number of players and the damage from each player correctly

[bookmark: _Toc387232883]Appendix E 	Game Flowchart
Yes
Valid

Yes
Game Over, player attack is no more effective
Microcontroller Receiver send valid message to Wand, Wand emit ultrasound
Is there a hit ?
Microcontroller Receiver decrease the player’s blood correspondingly
Dead?
Yes
Start Game
gesture validity
Button pressed
Standby
NO
NO
NO
NO

𝑎1=𝑤1 ∙𝑓(𝑥)
𝑎2=𝑤2∙𝑓(𝑥)
𝑎3=𝑤3∙𝑓(𝑥)

a= max⁡(𝑎1,𝑎2,𝑎3)
is the subscript of the maximum a matches the class it belongs to ?

predicted weight : w*
correct class weight : w'
w* = w* - f(x)
w' = w' - f(x)

image1.png
Wands

IMU

Accelerometer

Ultrasound
Transmitter

Microcontroller

XBee

Hit Sensor

Microcontroller

Power

N

Main Microcontroller Receiver

(microcontroller H XBee]

|

User Interface

image2.png
1 Project the state ahead

& = A%, +Buy

2Project the error covariance shead
J— T
P, = AP,_AT+Q

Iniial estimates
at

The outputs atk will be the input

1 Compute the Kalman Gain
- - -1
Ky = PLHT(HPHT + R)
2 Update the estimate via 7,
R = A+ Kz - Hip)

3 Update the error covariance
Py = (I-K H)P,

Tork+1

image3.png
(A) 025-inch diameter dowel, note the narrow
beam for close small objects,

(B) Linch dismeter dowel, note the long narrow
detection patern,

(€)325inch diametes rod, e the long
controlled detcetion patiern.

(D) 11-inch wide board moved Ieft toright with
the bourd parallel o the front [y
sensor face and the sensor o
stationary. This shows the
sensor’s range capabilty. 1

Yoo et g (D) e

e s o th o (1.t o

) 1 shovkd v e confnd

i scmor b it

c

‘values are nominal ‘e charactertaticn are spproctmate

image4.png

image5.png
inport serial

ser = serial.Serial('/dev/ttyUsse’, 9500)
string = 'Hello from Raspberry Pi

print 'Sending "s"' % string
ser.urite('#s\n' % string)

while True:
incoming = ser.readline().strip()
print 'Received %s' % incoming
ser.urite('RPi Received: %s\n' ¥ incoming)

image6.jpeg

image7.png
Y-axis movement

0z

o

os

os

X-axis movement
sin(Kalmanx)

P
os |

|

sf8tt.nee

image8.png
act_movel
2637

2598

88

1560

1927

1349

2954

act_move2
133
8

act_move3.

-1a57

937
1149
1705

938
139
1065

predicted

W W E NN NN NN R R e e e

actual

w | oo o0 |w [w [w [n [n [no 0o [o |1 i [[1o i 1 1

image9.png
FRI MAY 02 09:14:41 2014
22kH:

Min(1): 490mV
Pk-Pk(1): 2.81V

Freq(1)

|

@«
.2
=)
2
S
£
=
]
2
-
=
2
=)
<

image10.png
8606 /dev/tty.usbmodemfd121

Sending packet #0
1111506

Sending packet #1506
110

Sending packet #0
110

Sending packet #0
1119213

Sending pocket #9213
113

Sending packet #3
116

Sending packet #6
116

Sending packet #6
116

() Autoscroll No line ending [3) (9600 baud %)

image11.png
bug |
280G (X

Received hello
Received hello
Received hello
Received helle
Received helle
Received helle
Received hells
Received helle
Received helle
Received helle
Received helle
Received hello
Received hello
Received hello
Received hellc
Received hello
Received hello
Receivad hellg
Received hello
Received hellc
| Received hells

ved hello

dved hello

image12.png
Voltage (Ccv)
naN®o

H

500 mA Continuous Discharge

0.0

0.4 08 12
Service (hours)

16

image13.png
@1 ARDUINO

© 5V GND

Osel i
Ultrasound Transmitter

image14.png
1.GND

2.VOUT yjtrasound
ANALOG TN 3.5V-9V Receiver

128

image15.png
Transmit Mode Sequence

.
e
e ’ —
e
T
e

image16.png
g, Frame Osta Cracksum

oxE wss | 158 | | aprspoctcstncture || 18yte
Fovitter it spectc Dus
oxst emdData
‘Source Address (Bytes 56 Rssi(@yte7) RE Data (Byte(s) 1)

MSB (most sigifcant byte) frst,
LSB east significant) last

Received Signal Strength Indicator -
Hexadecimal equvaient of (<8m) vaiue.
(For exampie: If RX sigrl strength = 40
dBm, "0x28" (40 decima) is retumed)

Up to 100 Bytes per packet

