

NFC-Enabled Menu Ordering System

Final Report

Yau Chan, Patrick Ding, Patric Takagi

ECE 445

TA: Lydia Majure

Team #47

4/30/2013

Abstract

The Near Field Communication (NFC) menu system is designed to ease interaction with restaurant staff.
The system uses NFC to allow customers to intuitively point and select items programmed with
affordable NFC tags. After an order is complete, a checkout signal is selected (via NFC), allowing the
entire cart to be sent via radio frequency (RF) to the kitchen for staff use. Hardware used includes an
Arduino Mega 2560 R3, a XBEE Series 1 Wire Antenna, and a PN532 RFID NFC chip. The device is
portable and powered by a 9V battery, making this device convenient and easy to use.

ii

Contents

1 Introduction ... 1

1.1 Title: NFC Menu .. 1

1.2 Project Description .. 1

1.3 Goals, Functions, Benefits and Features ... 2

2 Design... 3

2.1 Block Diagrams .. 3

2.2 Block Descriptions ... 4

2.2.1 Overall ... 4

2.2.2 Menu Module .. 4

2.2.3 Receiver Module ... 5

2.3 Schematics .. 6

2.4 Process Flow Chart .. 7

2.5 Simulations and Calculations .. 8

3 Results, Graphs, and Measurements ... 11

4 Cost Analysis .. 13

5 Conclusions .. 14

5.1 Accomplishments .. 14

5.2 Uncertainties ... 14

5.3 Ethics ... 14

5.4 Future Work ... 15

6 References ... 17

7 Appendix .. 19

7.1 Requirements & Verification Table ... 19

7.2 Arduino Code .. 23

iii

1 Introduction

1.1 Title: NFC Menu

1.2 Project Description
Customers at restaurants desire prompt service, convenient ordering, and great food. We have no
control over the quality of food served; however, our project is designed to increase customer
satisfaction by taking advantage of the first two goals and making the restaurant experience as quick
and painless as possible.

Another problem that affects restaurants is the hectic queue due to a big lunch or dinner rush. Checks
may be misplaced in the kitchen, and customers will be forced to wait for their misplaced order to be
prepared. Also, there is an innate bottleneck when only waiters can place orders. A table may be ready
to order, but their waiter may be serving food or cleaning up after another table. We wanted to find a
solution that would allow patrons to place an order whenever they were ready.

Our idea is to help restaurants solve these problems by implementing a low-cost solution to increasing
customer and restaurant staff satisfaction. The idea is creating a menu using NFC technology. NFC tags
will be affixed to the restaurant menu with a specifically-designed NFC reader hard-wired to the menu.
Customers can use the reader to select menu items by hovering over the appropriate NFC tags on their
menus. Since NFC-tags are so low profile (almost as small as a sticker!), restaurants can keep the
current design/layout of their menus and integrate our new technology with low switching costs.

The menu will contain an RF module that will send the order directly to the kitchen, reducing the work
that waiters need to do. This will allow the restaurant to hire less waiters and will also improve any
miscommunication between server and patron. Imagine if you are in a foreign country where you do not
speak the native language. Our solution will allow you to intuitively point and select the items you want,
keeping difficult communication between server and guest minimal.

Of course, our product will not be attractive to every restaurant. Some restaurants thrive through the
friendly service that their staff brings to the table. Our product is designed for fast-casual type
restaurants where you are solely interested in getting your food and eating.

1

1.3 Goals, Functions, Benefits and Features
Goals & Functions:

· Improve customer and staff restaurant experience

· Up to 256 menus can be used at once

· Up to 256 items available for purchase on item catalogue (menu)

· Up to 128 unique selections can be transmitted in each order

· Small NFC Reader to detect and send NFC tags to microcontroller memory

· RF communication link between menu and kitchen

· Simple yet powerful computer user interface in kitchen for staff use

Benefits:

· Low-cost compared to other electronic menu options

· Reduction in wait staff required for dine-in customers

· Quick and accurate processing of take-out orders

· Enables precise queuing in the kitchen

· Simple integration with current menu (no significant redesign required)

· Eliminates need for cumbersome communication between server and guest

Features:

· Sleek menu with intuitive point-and-select interface

· Fast wired communication between reader and menu microcontroller

· LCD display to aid order selection/confirmation

· Backlit LCD module for use in dim restaurants

· Quick RF communication between menu and kitchen

2

2 Design

2.1 Block Diagrams

Figure 2.1: Top Level Block Diagram

Figure 2.2: Detailed Block Diagram

3

2.2 Block Descriptions

2.2.1 Overall
To create this NFC ordering system we used a menu that acted as an interface for the user. The menu
had a RF transmitter that wirelessly transmitted data of a customer's order to a receiver which
transmitted the data to a computer via USB port. For our prototype, the computer translated the data
into English and displayed the order.

NFC Tags:

These tags are small and easily programmable via computer software. The tags do not require power
and will be stuck inside the menu to represent various items-to-order. When a customer scans a picture
of the item they want to order, they will actually be scanning the NFC tag underneath the picture. When
scanned by the NFC reader, the NFC tags will transmit the data that represents an item to the reader
using near field communication technology.

2.2.2 Menu Module

Power Supply:

This will supply power to all the components that require it. The only component that does not require
the power supply to function is the NFC tags. The power supply will be connected to microcontroller in
parallel with a battery indicator circuit. The microcontroller will distribute power to the components
that it is connected to. The microcontroller takes 9V, so the power supply will consist of a 9V battery and
a battery box IM361 that will connect the 9V battery to the microcontroller.

NFC Reader:

NFC uses magnetic induction between two loop antennas. One antenna belongs to the initiator (active)
and the other, the target (passive). The initiator generates a carrier field in which the target responds by
modulating the existing field. For our case, our reader acts as the initiator while the NFC tags act as the
target. When we transmit our menu items from a smartphone onto the reader, the smartphone will act
as the initiator instead while the reader acts as the target. The NFC reader we will be using is NXP’s
PN532 transceiver module that is soldered onto a NFC RFID module made by elechouse. This module
comes with its own library and has I2C set as the default interface which is what we will use. It is be
hardwired to the microcontroller. The range of this reader 4-6 cm requires 5V TTL for I2C. This interface
only requires two bi-directional lines, Serial Data Line (SDA) and Serial Clock (SCL) which are pulled up
with resistors. Data transfer is initiated with a start bit when the SDA is pulled low while SCL is high.
Then, SDA sets the transferred bit while SCL is low and the data is received when SCL is an active high.
When transfer is complete, a stop bit is sent by releasing the data line to allow it to be pulled up while
SCL is constantly high.

4

RF Transceiver:

The transceiver will take the data that was picked up by the reader after the order is verified through
the microcontroller. Once the order is confirmed, the transceiver will wirelessly transmit the data to
another transceiver component which will be in the kitchen of the restaurant. This transceiver will also
receive a confirmation from the kitchen transceiver to notify customers that the order has been
received. The transceiver that will be used is the XBEE 1mW series 1 transceiver. This chip will draw 3.3
V at 50 mA from the microcontroller and features 250 kbps max data rate in the 2.4 GHz frequency
band. The range for this device will be around 100 meters.

4x20 LCD Module:

This will display the order and acts as an interface that allows the customer to view and then confirm or
cancel their order. The display will be a backlit LCD module that receives the data to display from the
microcontroller. We will be using the HD44780U (LCD-II) as the display. This display requires 2.7V - 5.5 V
of power and can display 80 max characters on the screen at once.

Arduino Microcontroller:

The microcontroller will take the data it receives from the NFC reader and will translate the data into the
desired item to display on the display module. It will also be able to receive input from the customer in
order to confirm or cancel the order. If confirmed, the microcontroller will transmit the data from the
NFC reader to the transmitter. Some memory will be required to store up to 32 unique selections made
by the user.

Battery Indicator:

This is a circuit consisting of a few basic components, particularly one red LED that will only light up
when the voltage accepted from the battery drops below ~6.9V (the threshold voltage before the
exponential plunge in the discharge rate curve for a 9V alkaline battery).

2.2.3 Receiver Module

RF Transceiver:

This will receive the data from the transmitter and will be transferred into a computer via a USB port.
The transceiver will be placed in the kitchen to allow communication from the customer directly to the
kitchen staff. When this transceiver has successfully received the order from the customers, it will send
confirmation to the menu transceiver. The transceiver used is the XBEE 1mW series 1. This is the same
transceiver being used as in the menu.

Dongle:

This is the device which interfaces the kitchen transceiver to the USB which will allow data to be
transmitted into a computer. We will be using the XBEE explorer dongle. This will allow the transceiver

5

to attach to the usb port perfectly. The dongle will regulate the 5V supply from the USB to the 3.3V that
the XBEE transceiver needs to run. It also eliminates the need for cables and allows for a small compact
unit that can be kept plugged into a computer display.

2.3 Schematics

Figure 2.3: Menu Schematic

6

Figure 2.3: Receiver Schematic

2.4 Process Flow Chart:

Figure 2.4: Menu Flow Chart

7

2.5 Simulations and Calculations
NFC Reader Preliminary Simulation

The following figures (Figures 7-8) show the expected results from scanning/receiving NFC information.
We will be using a smartphone and our NFC chip to test these results and make sure the NFC part of the
project works without any hitches. The software is an IDE (Integrated Development Environment)
created by Arduino. The pseudo-codes for the programs are shown as well1:

//Example code to write data
Strcpy((char*)block, “Testing - NFC”);
sta = nfc.MifareWriteBlock(blocknum, block); //Mifare is NXP’s trademark for several of their chips, particularly the PN532
If(sta) //transceiver that is central to our NFC reader as well as many other
 Serial.println(“Write block successfully:”); //NFC-enabled smartphones

//Example code to read data
//read block #4
Sta = nfc.MifareReadBlock(blocknum, block);
If(sta){
 Serial.println(“Read block successfully:”);
 Nfc.puthex(block,16);
 Serial.println();
}

Figure 2.5: Read/Write Example from Above Code

1 This code was only used in the NFC-Reader verification and was edited afterwards. Please view the attached code
in the appendix to see the modifications.

8

Battery Indicator Preliminary Simulation

Figure 2.6: Battery Indicator Circuit Prior to Reductions

Shown in Figure 2.6 is the schematic of the battery life indicator circuit prior to a component reduction.
The two SPICE schematics show the status of the LEDs above an approximately 6.7-6.9 voltage threshold
(green LED on) and below the threshold when the green LED is off and the red LED is on.

The green LED, (LED1) is the power indicator; it is on when at ~7V or above. The red LED (LED3) is on
when below the ~7V voltage threshold. These LEDs will have ~2V across when lit.

The BJTs (BC547C, NPN) all have a base-emitter voltage of approximately 0.7V and serve as switches in
our case.

A potentiometer (variable resistor) was used in determining the left most resistor value for the
threshold that we wanted (6.7-6.9V range) and afterwards, replaced by the equivalent valued resistor to
reduce cost.

Using KVL at the nodes relevant to the LEDs, we see that for red:

Vcc = I2*R2 + VLED3 + VCE
6.7 = (0.012*245)A+ VLED3 + 1.939V

VLED3 = 1.821V

For the green LED:

Vcc = I1*R1 + VLED1 + VCE

6.7 = 0.005*935+ VLED1 + (-2.407mV)
VLED1 = 2.027V

9

Although this circuit worked very well. We decided that a green LED was a hindrance on our goal of
minimizing size and power consumption. So we removed this LED and reduced the number of transistors
so our final circuit ended up as shown in Figure 2.7.

Figure 2.7: Final Battery Indicator Circuit

We added a potentiometer, reduced the number of transistors, resistors, and LED. The potentiometer
was used primarily in controlling the voltage of Q1 since the BJT required 0.6V-0.7V between base and
emitter. When Q1 is not conductive LED3 is off. When Q1 is conductive, Q6 turns on and enough current
flows through the LED to light it up.

Baud Rate Calculations
Arduino quartz oscillator operates at 16 MHz.

NFC Reader operates between 106 - 400 kbps bitrate:
 @424 kHz: 16 MHz/424 kHz = 37.7
 Frequency of NFC Reader stepped down by ~38x
 Each item = 1 byte; 1 byte / (424E3/8) = 0.0000189s per scan
 @212 kHz: 16 MHz/212 kHz = 75.7
 Frequency of NFC Reader stepped down by ~76x
 1 byte / (212E3/8) = 0.0000377s per scan
 @106 kHz: 16 MHz/106 kHz = 151
 Frequency of NFC Reader stepped down by 151x
 1 byte / (106E3/8) = 0.000075s per scan

RF Transceiver operates between 1.2 - 250 kbps bitrate:

10

 @ 250kHz: 16MHz/250kHz = 64
 Frequency for transceiver will step down by 64x

Full order of 128 items = 128 bytes. 128 bytes / (250E3/8) = 0.004 seconds per order
@ 125kHz: 16MHz/125kHz = 128

 Frequency for transceiver will step down by 128x
128 bytes / (125E3/8) = 0.008 seconds per order

@ 12.5kHz: 16MHz/12.5kHz = 1280
 Frequency for transceiver will step down by 1280x

128 bytes / (12.5E3/8) = 0.082 seconds per order
@ 1.2kHz: 16MHz/1.2kHz = 13,333.33

 Frequency for transceiver will step down by 13,333.33x
128 bytes / (1.2E3/8) = 0.853 seconds per order (little slow, but still manageable)

3 Results, Graphs, and Measurements
Battery Life Calculations

Since menus are vital to a restaurant’s operation, we needed to include calculations from battery life.
The system drew a whopping 320 mA when first completed. Knowing this was too high, our group
attempted to limit this power draw by limiting the amount of current that the communication
components and LCD backlight drew.

Figure 3.1: Reduction of Current Draw

Figure 3.2: Hours of Expected Use

From Figure 3.1, NFC reader and XBEE transmitter’s power draws were limited when we changed the
baud rate of those components. Since these components do not need to poll as quickly, power

11

consumption was reduced. The LCD Module also dropped its current draw by half when we added a
potentiometer to limit the backlight brightness.

The red column in Figure 3.2 shows the expected life (in hours) of various batteries BEFORE we did any
power limiting engineering. The green column shows the increased battery lifetime after we made
several modifications to our design.

We estimate that users will spend about 10 minutes learning the interface and selecting each order.
After our modifications and using a standard 565 mAh capacity battery, the menu would last roughly 3
hours. This would allow 18 orders to be placed, or about a night’s worth of orders for a busy restaurant.
More power considerations are discussed in future work.

Figure 3.3: XBEE Transmission Frequency

We used a spectrum analyzer from the lab to measure the frequency of the XBEE’s transmission. The
spectrum analyzer was attached with a small antenna to measure the XBEE’s transmission and find its
frequency. The XBEE was connected to a computer using the USB dongle and sent transmissions using
the program, X-CTU. The spectrum analyzer was set to “hold max” mode to measure the short
transmission sent from the XBEE. Figure 3.3 shows that the frequency of the transmission is within the
ISM 2.4 GHz frequency band

12

4 Cost Analysis
Labor

Name Hourly Rate Total Hours Invested Total = Hourly Rate x
2.5 x Total Hours

Invested
Patrick Ding $35.00 180 $15,750

Yau Chan $35.00 180 $15,750
Patric Takagi $35.00 180 $15,750

Total Labor Costs 540 $47,250

Parts

Item (P/N) Unit Cost Quantity Total Cost ($)
LED $0.42 1 $0.42
PCB $0.00 1 $0.00

Battery Box (IM361) $6.50 1 $6.50
Resistors, Transistors $3.17 Total $3.17

Backlit LCD Display
(LCD-00790)

$15.00 1 $15.00

RF Transceiver (WRL-
10534)

$22.95 1 $22.95

NFC Tags (NTAG203) $0.60 10 $6.00
NFC-Reader $34.60 1 $34.60

Dongle $12.95 1 $24.95
Total Parts Costs $113.59

Grand Total

Section Total
Labor $47,250.00
Parts $113.59
Total $47,363.59

13

5 Conclusions

5.1 Accomplishments
All of our project’s verifications passed as proposed, and each of the modules were engineered to work
properly. After we verified all modules, we then connected the entire system together with little
interface hitches. The PCB was the last roadblock to a complete working system; luckily for us, soldering
was a simple task and continuity was clean. We created a 3D-Printed enclosure for the system as a final
polishing step. Our demo to the ECE445 staff was successful.

5.2 Uncertainties
We were uncertain on how to further reduce power, after limiting LCD backlight and communication
baud rate. We have discussed further steps in the “future work” section of the paper (5.4).

Another uncertainty we have is how the system would work with multiple menus sending data at the
same time. According to the XBEE datasheet, the receiver should be able to handle ~10 signals at the
same time. However, further testing needs to be completed before we can support these claims.

A final uncertainty was the range of the RF transceivers. Although the system worked up to ~50 meters,
we were not able to consistently receiver signals past that range. We believe that obstacles played a
major role in hindering the RF signals. To counter this problem, we could use a higher model XBEE chip
or increase antenna size.

5.3 Ethics
The purpose of this project is to provide a user with a more convenient way to order and enjoy food at a
restaurant. In addition, the project should make it easier for restaurant staff to manage their orders
during peak demand times. Since this product will be used by both customers and staff, proper safety is
a must. If any unsafe bugs are discovered, we must work to develop a solution and recall the faulty
products. This follows the first code of the IEEE Code of Ethics:

1. To accept responsibility in making decisions consistent with the safety, health and
welfare of the public, and to disclose promptly factors that might endanger the public

or the environment;

The menu will also be marketed to restaurants around the country, so it must be able to deliver on all of
the features that we advertise. Data should not and will not be fabricated to deceive potential
customers. This correlates to the third code of the IEEE Code of Ethics:

3. To be honest and realistic in stating claims or estimates based on available data;

Our team needed to learn and study how both near-field and radio frequency communication works
before attempting to design the system. We also needed to learn how an Arduino behaves in order to
succeed in our design. We believe this relates to codes 5 and 6 of the IEE Code of Ethics:

14

5. To improve the understanding of technology, its appropriate application, and
potential consequences;

6. To maintain and improve our technical competence and to undertake technological
tasks for others only if qualified by training or experience, or after full disclosure of

pertinent limitations;

In this senior design class, we will be expected to interact with our peers and instructors technically and
professionally as well (in peer reviews, weekly TA meetings, etc). If needed, we will not hesitate to seek
advice from (or give advice to) the people that we find necessary. This correlates to the seventh, eighth,
and tenth codes of the IEEE Code of Ethics:

7. To seek, accept, and offer honest criticism of technical work, to acknowledge and
correct errors, and to credit properly the contributions of others;

8. To treat fairly all persons regardless of such factors as race, religion, gender,
disability, age, or national origin;

10. To assist colleagues and co-workers in their professional development and to
support them in following this code of ethics;

Finally, we are representing ourselves, our peers, our professors, and our school by working on this
project. We will need to be sure to act in a way that honors all of these stakeholders. This follows the
ninth code of the IEEE Code of Ethics.

9. To avoid injuring others, their property, reputation, or employment by false or
malicious action;

5.4 Future Work
Although our project was a success in the scope of this class, there is still much future work to be done
for the system to be completely marketable.

a.) Shrink Size of Menu

Our final product, while fairly small, was still a bit bulky to use around a restaurant. By shrinking the size
and improving the efficiency of the PCB, we hope to make the entire system a more manageable size.
This would allow greater convenience for users.

15

b.) Multiple Page Considerations

One problem with the menu is that when multiple pages are used (with tags on each page), the reader
seems to randomly detect either Tag A or Tag B (on different pages). Future work would require some
sort of shielding between each page to make sure that the correct tag is detected.

c.) Communication from Kitchen to Menu

One feature we would like to implement is communication from the kitchen back to the menu.
Customers would be able to see the progress of their order, including expected wait time.

d.) Reduction in Power Consumption

Our attempts to limit power consumption took us from a current draw of 320 mA to 180 mA. This
current draw is still too high for use in a restaurant application. Ryan May suggested that we could add
solar cells to the menu to trickle charge the system. He also suggested a sleep mode or current
regulators in the Arduino system to further limit power draw. An optimistic estimate would be ~60mA
power draw for the system. With a typical 565 mAh capacity battery, this would bring us up to a
reasonable 9 hours of battery life.

16

6 References
Battery Indicator Circuit:

"9v Battery Status Indicator Circuit." Instructables. N.p., n.d. Web. 6 Mar. 2013.
<http://www.instructables.com/id/9v-battery-status-indicator-circuit/>.

Ethics:

United States. IEEE. 7.8. IEEE Code of Ethics. Washington DC: , 2013. Web.

LCD Module:

Elger. "I2C LCD Display." Projects:lcd_module. N.p., n.d. Web. 23 Feb. 2013.
<http://elger.org/wiki/projects/lcd_module>.

"SainSmart IIC/I2C/TWI Serial 2004 20x4 LCD Module Shield For Arduino UNO MEGA R3."
SainSmart. N.p., n.d. Web. 21 Feb. 2013.
<http://www.sainsmart.com/sainsmart-iic-i2c-twi-serial-2004-20x4-lcd-module-shield-
for-arduino-uno-mega-r3.html>.

Microcontroller:

"Arduino - ArduinoBoardMega2560." Arduino - ArduinoBoardMega2560. N.p., n.d. Web. 01
Oct. 2012. <http://arduino.cc/en/Main/ArduinoBoardMega2560>.

Fried, Limor. "Arduino Tutorial - Learn Electronics and Microcontrollers Using
Arduino!"Ladyadanet Blog. N.p., 27 Apr. 2012. Web. 19 Feb. 2013.
<http://www.ladyada.net/learn/arduino/index.html>.

NFC:

"PN532 NFC RFID Module Kits -- Arduino Compatible." Elechouse.com. N.p., n.d. Web. 19
Feb. 2013.
<http://www.elechouse.com/elechouse/index.php?main_page=product_info&cPath
90_93&products_id=2205>.

Jahn, Rene. "NFC/RFID for Beagleboard Xm with Java." Blog SIB Visions RSS. N.p., 26
Nov. 2012. Web. 19 Feb. 2013. <http://blog.sibvisions.com/2012/11/26/nfcrfid-for
beagleboard-xm-with-java/>.

Power:

"Nine-volt battery." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia,
27 Feb. 2013. Web. 28 Feb. 2013.
<http://en.wikipedia.org/w/index.php?title=Nine-volt_battery&oldid=540922147>

17

http://elger.org/wiki/projects/lcd_module
http://www.sainsmart.com/sainsmart-iic-i2c-twi-serial-2004-20x4-lcd-module-shield-%0dfor-arduino-uno-mega-r3.html
http://www.sainsmart.com/sainsmart-iic-i2c-twi-serial-2004-20x4-lcd-module-shield-%0dfor-arduino-uno-mega-r3.html
http://arduino.cc/en/Main/ArduinoBoardMega2560
http://www.elechouse.com/elechouse/index.php?main_page=product_info&cPath%0d90_93&products_id=2205
http://www.elechouse.com/elechouse/index.php?main_page=product_info&cPath%0d90_93&products_id=2205
http://en.wikipedia.org/w/index.php?title=Nine-volt_battery&oldid=540922147

Transceiver:

XBee. "WRL-08664." XBee 1mW Chip Antenna. N.p., n.d. Web. 18 Feb. 2013.
<https://www.sparkfun.com/products/8664>.

XBee. "WRL-09819." XBee Explorer Dongle. N.p., n.d. Web. 18 Feb. 2013.
<https://www.sparkfun.com/products/9819>.

18

https://www.sparkfun.com/products/8664

7 Appendix

7.1 Requirements & Verification Table
Requirement Verification Status (C-Complete

or F-Failed)
1. Menu Power Supply (9V Battery):

● Must be able to supply a voltage
within the range of 7V-10V (safe
range)

● Must be able to supply a minimum
current rating of 25mA to a
maximum current rating of 100mA
at load ranges between 360 and
90 ohms

1.

a. Use a DMM to monitor the
voltage

b. While testing with loads
between 360 and 90 ohms, we will
use a DMM to monitor the current

C

2. Menu NFC Tags (Passive Element):
● Must be able to properly store

messages
● Must be able to transmit

messages to the NFC Reader
(functionality test)

2.

a. We will use the smartphone
application called TagWriter (by
NXP) and compare the contents
read by the smartphone with the
content programmed into the NFC
tag through Arduino’s IDE

b. We will write a plain text
message to the tag through
Arduino’s IDE

C

3. Menu NFC Reader:
● Must be able to properly receive

stored messages from the target
● Must be supplied 5V (±0.5 V)
● Must be able to forward the

received messages to the
microcontroller at 9600 bit/s with
0.1% bit-error

3.

a. Use TagWriter to receive plain
text messages

b. Probe the 5V feed from the
microcontroller with a DMM

c. Use Arduino’s IDE in relay
messages and spot for 0.1% bit-
error

C

4. Menu RF Transceiver:
● Must be supplied with 2.8-3.4V
● Must operate at ISM (industrial,

scientific, and medical radio band)
2.4 GHz frequency band.

● Must work at a range of
approximately 100 meters.

4.

a. Using a DMM, we will probe the
voltage supplied in order to verify
that it falls within the desired
range at all times

b. For a frequency range test, we
will use a spectrum analyzer and

C

19

● Must transmit data to and from
kitchen transceiver and
microcontroller at 9600 bps

run a frequency sweep with 1 MHz
step size to find the frequency
range (This must be between 2.4-
2.5 GHz)

c. For distance testing, we will
manually guess and check starting
from 100 meters and observe for
accuracy on our computer display
(i.e. submit a selection and
observe the response from the
GUI)

d. Use X-CTU to set the baud rate
and create a test program to have
a message from the menu XBEE
connected to the Arduino
transmitted to the kitchen
transceiver connected to the
dongle. Message will be displayed
on the computer screen and must
have 0.1% bit-error.

5. Menu Display:
● Must be able to properly display

messages that were read from the
NFC Reader

5.

a. Will be given a test message
from the microcontroller (typed
from Arduino’s IDE) and spot for
0.1% bit-error

C

6. Menu Microcontroller:
● Must operate from a 9V battery

power supply (7V-12V safety
range).

● Must output data to LCD display
correctly.

● Must receive correct data from
NFC reader.

● Must transmit correct data to
menu transceiver.

● Must be able to hold 2560 bits of
memory for menu items.

● Must be able to transmit and
receive data from transceiver at
9600bps.

● Must be able to regulate voltage
from the power supply and
provide other components with
power.

6.

a. While the microcontroller is
powered, we can use a DMM to
monitor the voltage across and
the current drawn from the
battery

b. Test code will be developed
(using provided library’s from
Arduino) to interface between the
LCD and microcontroller which will
properly display the messages
read from the NFC reader (which
can be tested with a TagWriter as
mentioned in #2 Verif.)

c. Using TagWriter to transmit a
message to the NFC reader and to

C

20

the microcontroller, we will use
Arduino’s IDE to view the data and
spot for 0.1% bit-error

d. Test code will be written to
display (or TagWriter will be used)
the data that the microcontroller
will send to the transceiver while
also spotting for 0.1% bit-error

e. Dummy memory will be written
to the first 3 MB of EEPROM, and
then read to an output file.
Input/output test files will be
Vimdiff’d to prove that they are
identical

f. Create test code to send
message to the kitchen
transceiver connected to a
computer which will be set at
9600 baud rate. Check the test
message being sent using X-CTU

g. We will use a DMM to probe
voltage outputs from the power
supply and the feeds

7. Receiver RF Transceiver:
● Must be supplied with 2.8-3.4V
● Must operate at ISM (industrial,

scientific, and medical radio band)
2.4 GHz frequency band.

● Must work at a range of
approximately 100 meters.

● Must transmit data to and from
kitchen transceiver and
microcontroller at 9600 bps

7.

a. We will use a DMM to probe
the regulated voltage from the
dongle

b. For a frequency range test, we
will use a spectrum analyzer and
run a frequency sweep with 1 MHz
step size to find the frequency
range. This must be between 2.4-
2.5 GHz

c. For distance testing, we will
manually guess and check starting
from 100 meters and observe for
accuracy on our computer display
(i.e. submit a selection and
observe the response from the
GUI)

C

21

d. Use X-CTU to set the baud rate
and create a test program to have
a message from the kitchen XBEE
connected to the Arduino
transmitted to the menu
transceiver connected to the
dongle. Message will be displayed
on the computer screen and must
have 0.1% bit-error.

8. Dongle
● Must regulate voltage of 5V from

USB to 2.8-3.4V for the transceiver
● Must allow for transfer of data

from kitchen transceiver to USB

8.

a. Probe the VCC pin (pin1) of the
dongle with a DMM to verify that
the voltage supplied is within the
correct range

b. Also create test code on
computer display to verify the
contents from the transceiver are
being transmitted to computer
with 0.1% bit-error

C

9. Receiver Computer Display (software)
● Must be able to parse the signal

and display the appropriate
messages from the kitchen
transceiver

9.

a. Software will test corner
cases/simultaneous entry and
show the data on the computer
screen

C

10. Menu Battery Life Indicator:
● Accurate LED Indication (Red LED

lit below 6.9V Vcc)
● Low power consumption such that

it does not interrupt the battery’s
ability to power a load

10.
a. Use a DC power supply and set
the input voltage to below and
above the 7V threshold

b. Use a DMM on a 9V power
source to observe the power
consumed from a matched load
(replicated with resistors)

C

22

7.2 Arduino Code
// This is the root program to run for NFC to work
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <stream>
#include <Wire.h>
#include <LCD.h>
#include <LiquidCrystal_I2C.h>
#include "nfc.h"
#include "Wire.h"

#define I2C_ADDR 0x3F //I2C Address
#define BACKLIGHT_PIN 3
#define En_pin 2
#define Rw_pin 1
#define Rs_pin 0
#define D4_pin 4
#define D5_pin 5
#define D6_pin 6
#define D7_pin 7

NFC_Module nfc;

byte incomingByte;
int cartNum = 1; // initialize cart position
int orderNum = 1;
char menuNum = 'B';
int myCart[64];
boolean resetCartFlag = true;

LiquidCrystal_I2C lcd(I2C_ADDR,En_pin,Rw_pin,Rs_pin,D4_pin,D5_pin,D6_pin,D7_pin);

void setup()
{
 clearCart();

 Serial.begin(9600);

 nfc.begin();

 lcd.begin (20,4,LCD_5x8DOTS);
 lcd.setBacklightPin(BACKLIGHT_PIN,POSITIVE); //initialize backlight

 lcd.clear();
 lcd.setBacklight(HIGH);
 nfc.SAMConfiguration();

 // Welcome screen
 printCenter(10,1);
 lcd.print("Welcome to");
 printCenter(17,2);

23

 lcd.print("MIKE'S MILKSHAKES");
 delay(1500);
 wipeLines();

 }

void loop()
{

 wipeLines();

 if (resetCartFlag == true)
 {
 clearCart();
 resetCartFlag = false;
 }

 printCenter(10,0);
 lcd.print("May I take");
 printCenter(11,1);
 lcd.print("your order?");
 printCenter(15,2);
 lcd.print("Please select a");
 printCenter(10,3);
 lcd.print("menu item.");

 //
 // If new data is available, then load item information
 //

 //while (Serial.available() == 0) {}//Wait for keyboard input

 incomingByte = pollNFC();

 wipeLines();
 delay(500);

 byte MenuID = incomingByte;

 if ((incomingByte > 0) && (incomingByte < 255)) // If data falls within spec
 {
 if (incomingByte == 254)
 {
 checkoutQuestion();
 checkout();
 return;
 }

 printCenter(16,0);
 lcd.print("You have chosen:");
 displayItem(incomingByte, 1);

 //Ask for Confirmation

24

 printCenter(12,3);
 lcd.print("ADD TO CART?");

 delay(500);

 boolean YesNo = yesOrNo();
 if (YesNo == 1)
 //User wants to add to cart
 {
 wipeLines();

 addToCart(MenuID, cartNum);

 printCenter(17,1);
 lcd.print("Item # ");
 lcd.print(MenuID);
 lcd.print(" has been");
 printCenter(13,2);
 lcd.print("added to cart");
 delay(1000);
 }

 else
 //User does not want to add to cart
 {
 wipeLines();
 return; //Go back and ask for new swipe
 }
 }
 else
 {
 printCenter(14,1);
 lcd.print("Invalid Entry");
 delay(1000);
 return; // go back to top of loop() function.
 }
}

void checkout()
{
 boolean YesNo = yesOrNo();

 if (YesNo == 1)
 {
 myCart[0] = cartNum;
 wipeLines();
 printCenter(20,0);
 lcd.print("Items in your cart: ");
 delay(500);

 printCenter(20,1);
 int count = 0;

25

// for (int z = 0; z <= myCart[0]/4; z++)
 // {
 for (int j = 1; j <= myCart[0]; j++)
 {
 displayItem(myCart[j], j%4);
 delay(300);
 count++;
 if (count == 3)
 {
 count = -1;
 delay(2000);
 wipeLines();
 }
 }

 delay(2000);
 wipeLines();
 }

 else
 {
 wipeLines();
 return;
 }

 wipeLines();
 printCenter(16,0);
 lcd.print("Are you sure you");
 printCenter(14,1);
 lcd.print("want to submit");
 printCenter(11,2);
 lcd.print("your order?");
 printCenter(20,3);
 lcd.print("NO WILL CANCEL ORDER");

 YesNo = yesOrNo();

 if (YesNo == 1)
 {
 sendOrder();
 }
 else
 {
 resetCartFlag = true;
 wipeLines();
 printCenter(14,1);
 lcd.print("Order has been");
 printCenter(10,2);
 lcd.print("CANCELLED!");
 delay(1000);
 return;
 }
}

26

void checkoutQuestion()
{
 printCenter(9,0);
 lcd.print("CHECKOUT?");
 printCenter(18,1);
 lcd.print("NO will allow more");
 printCenter(18,2);
 lcd.print("items to be placed");
 printCenter(13,3);
 lcd.print("into the cart");
}

//
//
//

//
// Begin Helper Functions
//

//
// Function to print item on the LCD
//

void displayItem(int newByte, int row)
{
 String stringPtr;
 switch (newByte)
 {
 case 1: stringPtr = "Grasshopper";
 break;
 case 2: stringPtr = "Tin Roof";
 break;
 case 3: stringPtr = "Oatmeal Cookie";
 break;
 case 4: stringPtr = "Strawberry Shortcake";
 break;
 case 5: stringPtr = "Guinness";
 break;
 }
 int strLength = stringPtr.length();
 printCenter (strLength, row);
 lcd.print(stringPtr);
}

//
// Function to +1 item to cart
// x = Item #; i = cart position

void addToCart(int x, int i)
{
 myCart[i] = x;

27

 cartNum = cartNum++;
}

//
// Helper function to figure out if user swiped YES or NO tag
//

boolean yesOrNo()
{
 byte newByte = pollNFC();
 while (newByte != 255 && newByte != 253)
 {
 newByte = pollNFC();
 }

 if (newByte == 255)
 {
 return true;
 }
 else if (newByte == 253)
 {
 return false;
 }
}

//
// Function to empty contents of cart
//

void clearCart()
{
 for (int i = 0; i < 64; i++)
 {
 myCart[i] = 0;
 }
 cartNum = 1;
}

void wipeLines()
{
 for (int y = 0; y < 4; y++)
 {
 for (int x = 0; x < 20; x++)
 {
 lcd.setCursor (x,y);
 lcd.print(" ");
 delay(5);
 }
 }
}

// Send order to Kitchen

28

void sendOrder()
{

 wipeLines();
 printCenter(10,1);
 lcd.print("Sending...");
 sendRF(myCart);
 delay(1000);
 printCenter(15,2);
 lcd.print("Order Received!");
 orderNum++;
 resetCartFlag = true;
 delay(1000);
}
// Helper for sendOrder.
// Sends contents of cart to kitchen.

void sendRF(int* myCart)
{
 Serial.println("***********************************");
 Serial.println("************BEGIN ORDER************");
 Serial.println("***********************************");

 Serial.print("Menu ");
 Serial.print(menuNum);
 Serial.print(":");
 Serial.println();

 Serial.print("Order #");
 Serial.print(orderNum);
 Serial.print(":");
 Serial.println();

 for (int i = 1; i<myCart[0]; i++)
 {
 Serial.print("Item ");
 Serial.print(i);
 Serial.print(": ");
 Serial.print(myCart[i]);
 Serial.println();
 }

 Serial.println("***********************************");
 Serial.println("***********END OF ORDER************");
 Serial.println("***********************************");
 Serial.println();

}

// Function to poll NFC and read next block

u8 pollNFC()
{

29

 u8 sta, buf[32];

 sta = nfc.InListPassiveTarget(buf);

 //if (sta && buf[0] == 4)
 while (sta == 0)
 {
 sta = nfc.InListPassiveTarget(buf);
 if (sta == 1)
 break;
 }

 u8 key[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};

 sta = nfc.MifareAuthentication(0,4,buf+1,buf[0],key);
 if (sta)
 {
 u8 block[16];
 sta = nfc.MifareReadBlock(4,block);
 if (sta)
 {
 return block[0];
 }
 }
}

//
// Function to put cursor in center
// x = stringLength, y = row

void printCenter(int x, int y)
{
 switch (x)
 {
 case 1:
 lcd.setCursor(10, y);
 return;
 case 2:
 lcd.setCursor(9, y);
 return;
 case 3:
 lcd.setCursor(9, y);
 return;
 case 4:
 lcd.setCursor(8, y);
 return;
 case 5:
 lcd.setCursor(8,y);
 return;
 case 6:
 lcd.setCursor(7, y);
 return;
 case 7:

30

 lcd.setCursor(7, y);
 return;
 case 8:
 lcd.setCursor(6, y);
 return;
 case 9:
 lcd.setCursor(6, y);
 return;
 case 10:
 lcd.setCursor(5, y);
 return;
 case 11:
 lcd.setCursor(5, y);
 return;
 case 12:
 lcd.setCursor(4, y);
 return;
 case 13:
 lcd.setCursor(4, y);
 return;
 case 14:
 lcd.setCursor(3, y);
 return;
 case 15:
 lcd.setCursor(3, y);
 return;
 case 16:
 lcd.setCursor(2, y);
 return;
 case 17:
 lcd.setCursor(2, y);
 return;
 case 18:
 lcd.setCursor(1, y);
 return;
 case 19:
 lcd.setCursor(1, y);
 return;
 case 20:
 lcd.setCursor(0, y);
 return;
 }
}

31

	1 Introduction
	1.1 Title: NFC Menu
	1.2 Project Description
	1.3 Goals, Functions, Benefits and Features

	2 Design
	2.1 Block Diagrams
	2.2 Block Descriptions
	2.2.1 Overall
	2.2.2 Menu Module
	2.2.3 Receiver Module

	2.3 Schematics
	2.4 Process Flow Chart:
	2.5 Simulations and Calculations

	3 Results, Graphs, and Measurements
	4 Cost Analysis
	5 Conclusions
	5.1 Accomplishments
	5.2 Uncertainties
	5.3 Ethics
	5.4 Future Work

	6 References
	7 Appendix
	7.1 Requirements & Verification Table
	7.2 Arduino Code

