

SP13 ECE 445 Senior Design Brain-controlled Portable Programmable Embedded System

Group 44 Xuanyu Zhong Shiyang Liu Yujie Chen TA: Lydia Majure Sponsored by: Jamie Norton and his lab

Introduction

- More innovative controlling method
- Technology of electroencephalography (EEG)
- A device that allows you to "control with you brain"

ECE ILLINOIS

I

]

Introduction

- More innovative controlling method
- Technology of electroencephalography (EEG)
- A device that allows you to "control with you brain"

Introduction

- More innovative controlling method
- Technology of electroencephalography (EEG)
- A device that allows you to "control with you brain"

If the embedded video didn't quite work,

http://youtu.be/pE1Xmq7yvJk

Features

- Wireless signal transmission (Bluetooth)
- Interactive displays (LCD)
- Effective signal stimulation (LEDs)
- EEG signal detection (Sponsored)
- Brain-control-friendly software system

Ĩ

System Overview

• Hardware:

- Power Supply
- Micro-controller Unit
- Bluetooth (communication)
- LCD screen, LEDs (display)
- Software:
 - Arduino-based embedded programming
- Sponsored:
 - EEG detection module (device & software)

Block Diagram

Hardware – Power Supply

- 9V Alkaline batteries
- 5V/3.3V modulator on Arduino board

Hardware – Micro-controller

• Arduino Mega 2560 board

Hardware – Bluetooth

- HC-05 Bluetooth tranceivers (slave)
- USB Bluetooth module for PC (master)
- Serial connection set-up using Matlab

Bluetooth Matlab Sample Code

- b = Bluetooth('S1', 1);
- fopen(b);
- up = 'w'; down = 's';
- fwrite(b, up, 'uchar');
- fwrite(b, down, 'uchar');
- fclose(b);
- clear(b);

Bluetooth Arduino Sample Code

- Serial.begin(9600);
- val = Serial.read();

Hardware – Display (LCD)

- SainSmart 3.2" TFT LCD screen w/ touch panel
- Screen shield for Arduino Mega 2560

ECE ILLINOIS

255

I

Ĩ

Hardware – Display (LED)

- LED flashing circuitry
- 4 groups of LEDs flash at 4 different frequencies (combinations of capacitors and resistors of different values):

– 5.7Hz, 7.1Hz, 7.9Hz, 9.4Hz

• LM348 Op Amp chip

LED Flashing Circuit (Original)

• Timer 555 IC

- Associated issues/problems:
 - Duty cycle is not 50% on/off
 - Frequencies not stable

I

Schematics (Timer 555)

]

LED Flashing Circuit (Original)

- Timer 555 IC
- Associated issues/problems:
 - Duty cycle is not 50% on/off
 - Frequencies not stable
 - Failed to stimulate/detect signals

Waveform (Timer 555)

1 2.00V/ 2	3	4	,-	0.0	10.1	00%/ Stop	P F	1 Acqui Norr 10.0M Chan	115% gilent sition # mal ASa/s nnels # 1.00:1 1.00:1 1.00:1
							ΔΝ 17. ΔΝ	×: +28,200ι ′ΔΧ: - Y(1):	0000000ms +35.461Hz +0.0V
Cursors Menu Mode Manual	Sou 1	roe 💿	Cursors X1		Units	X1: -200.000 X2: 28.00000	0000us 100000ms	Y1: 8 Y2: 8	.00000V .00000V
1					0				in the

LED Flashing Circuit (Revised)

- LM348 Op Amp Chip
- Improvements
 - Duty cycle is 50% on/off
 - Frequencies are stable
 - Cleaner square wave
 - Capable to stimulate/detect signals

I

Schematics (LM348)

ECE ILLINOIS

Simulation & Calculation (LM348)

Ĩ

LED Flashing Circuit (Revised)

- LM348 Op Amp Chip
- Improvements (with specific combinations of capacitors and resistors)
 - Duty cycle is 50% on/off
 - Frequencies are stable
 - Cleaner square wave
 - Capable to stimulate/detect signals

Waveform (LM348)

1	2 2 001/ 1		0.0; 2	1001/ Auto	£ 2 -40.00
					Acquisition # Normal 5.00MSa/s Charnels # OC 1.001 DC 1.001 DC 1.001 DC 1.001
Autoscala	Menu ndo Fant De occión	breg 🔿 Charmels Displayed	Ang Mode Normal		

ECE ILLINOIS

Software – Embedded System

- Arduino Programming Environment
- UTFT library support for graphical design and programming
- Two-level menu-content design as a prototype for demonstration
- Possible further development

Software – Embedded System

- Arduino Programming Environment
- UTFT library support for graphical design and programming
- Two-level menu-content design as a prototype for demonstration
- Possible further development

UTFT Sample Code

- ITDB02 myGLCD(19,18,17,16);
- myGLCD.initLCD(0);
- myGLCD.setColor(255,0,0);
- myGLCD.print("Hello World",CENTER,0);
- myGLCD.drawBitmap(0,0,64,64,image,2);

Software – Embedded System

- Arduino Programming Environment
- UTFT library support for graphical design and programming
- Two-level menu-content design as a prototype for demonstration
- Possible further development

]

Software Logistic Flow Chart

Inputs:

- 0 top selected (scroll up)
- 1 center selected (select)
- 2 bottom selected (scroll down)
- 3 bottom-right selected (exit)

Software Logistic Hierarchy

Software – Embedded System

- Arduino Programming Environment
- UTFT library support for graphical design and programming
- Two-level menu-content design as a prototype for demonstration
- Possible further development

]

Sponsored – Detection module

Requirements – Power Supply

- Supply steady 9V input to Arduino board and LED flashing circuit
- Output steady 5V from modulator to drive Bluetooth module

Verification – Power Supply (5V)

Verification – Power Supply (5V)

 Use a set of different configurations (R1) and obtain result by measuring the currect across R1.

Resistance (Ω)	Voltage (V)
33	4.83
45	4.83
56	4.86
78	4.84
88	4.86

Requirements – Bluetooth

- Receive transmitted input signal correctly and pass it to Arduino microcontroller
- On detection module side, once a EEG signal detected, a transmission should be triggered

Verification – Bluetooth

- Use Bluetooth app on Android cellphone to send commands to HC-05 module and check if the indicator on Arduino responds; Repeat 10 times
- Use detection device and check if the indicator on Arduino responds every time there is a signal detected; Repeat 10 times

Verification – Bluetooth (RESULTS)

Test#	Result (indicator)
1	Y
2	Y
3	Y
4	Y
5	Y
6	Y
7	Y
8	Y
9	Y
10	Y

]

Requirements – Display (LED)

- Blinks at frequencies (5hz to 15hz) with 50% duty cycle, and stable waveforms
- LEDs at different frequencies not interference to each other so that detection module can tell which LED is being stared at

Verification – Display (LED)

- Use oscilloscope to observe the waveforms and check duty cycles and stability
- Set up detection module and 4 groups of LEDs; Look at one LED and check if correct frequency is detected; Repeat 20 times

Waveform Observation

**	gilent Technologies	InfiniiVision	Digital Stream	Ostillininge		a GBa/a	menny Com
	2 2.007/	4		0.01	20.004/	Auto	€ 2 -40.0 Agilent ■ Acquisition = Normal 5.00MSa/s
ų							a Chernels a OC 1.00.1 OC 10.0.1 DC 1.00.1 OC 1.00.1
A NOT THE OWNER							
Autos	cale Menu Undo Fa Autoscale	t Debug	Channels Displayed	 Ang Mod Normal 			
	14	14 Q.		1.	10.000	10	

Verification – Display (LED)

- Use oscilloscope to observe the waveforms and check duty cycles and stability
- Set up detection module and 4 groups of LEDs; Look at one LED and check if correct frequency is detected; Repeat 20 times

Verification – Display (LED) (RESULT)

Frequency intended (Hz)		Frequency	Frequency	Frequency
		detected (Hz)	intended (Hz)	detected (Hz)
	5.7	5.7	7.9	7.9
7.1 7.9 9.4 5.7 7.1 7.9 9.4 5.7		7.1	9.4	9.4
		7.9	5.7	5.7
		5.7	7.1	7.1
		5.7	7.9	7.9
		7.1	9.4	9.4
		7.9	5.7	5.7
		9.4	7.1	7.1
		5.7	7.9	7.9
	7.1	7.1	9.4	9.4

%Accuracy = (20 - 1 mis-detection)/20 = 95%

Ĩ

Future Work

- Add logic circuit (or muxes) to turn off some LEDs when not being used
- Add frosted plastic/glass covers on top of LEDs to defuse light for better detection
- Integrate Arduino/LCD screen better with PCB (a more integrated product)

Credits

- Jamie Norton
- TA: Lydia Majure
- Prof. Carney
- Ryan May and Dennis Yuan
- Staff at ECE Part Shop

Questions

Thank You!

