

Jump Trading Medical

Simulation Controller

by

Jian Chen

Michal Rys

Final Report for ECE 445, Senior Design, Fall 2013

TA: Justine Fortier

 April 30, 2013

Project No. 35

ABSTRACT

The Jump Trading Simulation and Education Center is a high-tech facility

used train future medical doctors. The facility’s surgery simulators are

currently controlled by software running on laptops. In order to make an

adjustment to the simulation, the technician must tediously navigate the

software’s interface with a mouse and keyboard, making on-the-fly

adjustments difficult and slow. This report documents the design and

construction of a hardware device that simplifies such adjustments by

providing a physical interface that that is easily navigable with minimal

attention.

Table of Content

I Introduction

1.1 Benefits 1

1.2 Features 1

1.3 Block Diagrams 2

II Design

2.1 Design Procedure 5

2.2 Schematics and Flowcharts 7

III Requirements & Verification

3.1 User Interface 11

3.2 LCD Unit 11

3.3 Micro-controller 12

3.4 Power Supply 12

3.5 Software Interface 12

IV Cost

4.1 Labor 13

4.2 Parts 13

V Conclusion

 5.1 Accomplishments 15

 5.2 Uncertainties 15

 5.3 Ethical Considerations 15

 5.4 Future Work 17

VI Device Use Guide

 6.1 Connection 18

 6.2 Device Use 18

VI References 19

1

I. INTRODUCTION

1.1 Benefits

● Provides an ergonomic solution to making on-the-fly

adjustments of simulation parameters (heart rate, airway respiratory rate,

diastolic blood pressure, systolic blood pressure, oxygen saturation)

● Eliminates the use of software GUI as a form of making

adjustments to the aforementioned parameters

● Minimizes the amount of attention the technician focuses on

physically making an adjustment to a parameter.

● Maximizes the amount of attention the technician focuses on the

students and simulation.

1.2 Features

● Large wall-mounted backlit LCD unit for easy glancing at

parameter values

● Two adjustment knobs for quick changes to a parameter’s target

value

● Ability to interface with existing Laerdal software used to control

simulations

2

1.3 Block Diagrams

Figure 1 Top Level Block Diagram

Figure 2 User Interface

3

Figure 3 Micro-controller

1.3.1 User Interface:

The User Interface consists of all hardware associated with selecting,

updating, and initiating the submittal of a SimMan parameter.

1.3.2 Microcontroller:

This is the central hub of the device. The Microcontroller block processes

input from the user, sends data over a serial connection, and parses and

displays data received from the Software Interface.

1.3.3 LCD Unit:

The LCD Unit displays all current values of changeable simulation

parameters. Additionally, while the device is in the parameter value input

state, the current input value is displayed.

4

1.3.4 Software Interface:

The software interface has two main functions. First, upon receiving a

request from the microcontroller, the Software Interface actually performs

the parameter changes via the Laerdal SimMan software development kit.

Second, upon detecting software side parameter changes, the Software

Interface sends the freshest value of the parameter to the Microcontroller to

display.

1.3.5 Power Unit:

The device is powered by 12V DC supplied by a wall-connected cable.

5

II. DESIGN

2.1 Design Procedure

2.1.1 User Interface:

Push buttons are used for parameter selection. Every adjustable parameter

has a dedicated corresponding button on the device. The device has 5 such

buttons, one each for heart rate, airway respiratory rate (awrr), diastolic

blood pressure, systolic blood pressure, and oxygen saturation. After

selecting a parameter button, the user then uses two rotary encoders to

adjust the value of the parameter. One rotary encoder is used for

incrementing, the other for decrementing the value.

Value submission is controlled by a “Submit” button on the device. If the

controller is in a value adjustment state, then this button will cause the

microcontroller to begin pushing the values to the Laerdal software.

Another pushbutton is used to allow the simulation to be paused.

All User Interface components feed directly into digital input pins on the

microcontroller.

There are alternatives for the choice of parameter selection mechanism. A

rotary selector could serve the same purpose as our button setup. The final

design did not adapt this due to us believing that the buttons allow for a

more intuitive user experience. Because the user would be using this device

in a simulation environment, his/her attention would be focusing on the

observation room, user could easily lose track of the position of rotary

selector, and thus lose sense to which parameter is being selected.

2.1.2 Microcontroller:

The device uses an Arduino Due microcontroller. The Arduino Due runs an

Atmel SAM3X8E ARM Cortex-M3 processor and features 54 digital and 12

analog input/output (i/o) pins and an 84 MHz clock speed. All digital circuitry

associated with the microcontroller will run at 3.3V. The microcontroller

receives data from two sources: parameter values from the User Interface

over digital and analog i/o lines, and Laerdal software status over the

Universal Serial Bus (USB) mounted on the board from the software

interface. After processing the input, the microcontroller outputs values to

the LCD Unit over digital i/o pins, and send commands to the Software

Interface over the USB.

6

2.1.3 LCD Unit:

The LCD Unit consist of 3 separate 4 lines*20 characters LCD’s. Two LCD’s

are dedicated to displaying the values of all parameters currently set in the

Laerdal software. This allows the technician controlling the simulation to

easily view all current values simultaneously. If the device is in a parameter-

setting state, then the third LCD displays a live value of the parameter being

set by the technician through the user interface. The LCD Unit receives all

display data from the Microcontroller.

2.1.4 Software Interface:

The Software Interface facilitates all communication between the device and

the Laerdal software. Upon launch, the Software Interface performs a port

scan on all serial ports available, and attempts a handshaking protocol. Only

the port on which our device is present will cause the handshaking

procedure to run to completion, thus establishing where the software

interface can find the device. The Software interface invokes various tools

available through the Laerdal SDK to perform two main tasks: updating

parameters as inputted by the user and sending update packets to the

microcontroller whenever a parameter is changed within the Laerdal

software itself. This two-way communication allows the device to display the

freshest possible values on the device, and to actually perform the update of

a parameter in the system. The communication interface is implemented as

a C# windows application using a USB connection to communicate with the

microcontroller.

2.1.5 Power Unit

Power is supplied by a 120 V plug into the wall. The adapter converts 120V

AC into 12V DC and feeds into the Arduino microcontroller. 3.3V pins are

used to power up LCD Unit. The total current draw is:

Each connection to the 3.3-Volt pin draws 50mA current. Up to 17 pins could

be drawing power from the 3.3V pins (7 for buttons, 6 for 3 LCDs, and 2 for

the 2 rotary encoders).

Thus:

I(3.3-Volt pin) = 17*50mA = 850mA;

All calculation is based on theoretical maximum current draw, in practice,

the current draw is less than 850mA.

7

2.2 Schematics and Flowcharts

2.2.1 Schematic for overall system

Figure 4: Schematic for low speed 4-data-bid LCD using shared data lines and separate Enable Lines

8

Figure 5: Schematic for Rotary Encoder and Push Button (7 buttons connected through internal pull-up

resistors, 2 rotary encoders are connected with similar wiring)

9

2.2.2 Flow Charts for System Software

Figure 6: Flow chart for microcontroller software

10

Figure 7: Flow chart for Software Interface

11

III REQUIREMENTS & VERIFICATION

For the verification procedure table, please refer to the table appended at the end

of the report.

3.1 User Interface

Each button connects to a 3-Volt input pin on the Arduino using internal pull-

up resistors and ground. A multimeter was used to perform tests on the

buttons. When the button is released in natural state, the voltage read

3.13V; when the button is pressed, the voltage read 0V. This was the

expected result

When testing our capacitive touch pads for functionality, we ran into

problems. Our setup consisted of a test program running on the Arduino Due

that sent the coordinates reported by the touch sensor over a serial

connection. Unfortunately, the Arduino would always incorrectly send (0,0)

coordinates. After successfully using an older-generation Arduino with the

same program, we delved into the library code supplied by the part

manufacturer to see where the problem may be. Eventually we narrowed the

problem down to library calls related to I2C communication. Despite official

documentation saying otherwise, we found that the I2C communication

library for the Arduino Due is not yet fully functional. Our findings were

confirmed by numerous posts on the internet.

Because we no longer were able to use the capacitive touch sensors, we

decided to implement parameter value input functionality with two rotary

encoders. To test the encoders, an Arduino test program was written to

increment or decrement and display a numerical value. Due to a nuance of

the encoders’ design, we were not able to get consistent performance for

counter clockwise rotation detection. To compensate for this, we re-assigned

one of the encoders from selecting Adjustment Time, to decrementing a

parameter value. We verified encoder functionality by using an oscilloscope.

Both encoder output pins were monitored and were correctly changing

between 0V and 3V.

3.2 LCD Unit

Each of the three LCDs were wired with a 4 data pin connection and tested.

First we ran a test program on all 3 LCDs, and correct values were displayed.

The refreshing rates were fast enough to catch and display all the real time

12

changing values. Additionally, a multimeter was used to test each pin’s

voltage. Pin 2, 15 were 3.2 volts, pin 1, 3, 5, 6, 16 were 0 volt, and data pin

14, 13, 12, 11 are within range of 0 to 3 volts. All the values were within our

expected ranges.

3.3 Micro-controller

The Arduino was connected with all 7 buttons and 2 rotary encoders. A test

program was written to check if buttons were being properly debounced, and

to ensure that when a button is pressed and held the system only reacts a

single time. A test program and serial listener were used to test serial

communication. First, we verified that data packets were being properly

constructed and sent over the serial connection. When testing serial reads,

we found that the Arduino Due was leaking book-keeping bytes into the data

delivered to our program. Online searches showed that this is a known issue

with the Arduino Due firmware. To get around this problem, we created

custom headers for all communication between our Microcontroller and the

Software interface. When reading from the serial port, our Microcontroller

would only accept packets with our headers.

Each of the pins are also measured voltages with the multimeter, the

voltages are reading within 3.3 volts. They are in the expected safe range.

3.4 Power Supply

The power cord is plugged into the wall, and connected to the Arduino. The

Arduino is fully functioning.

3.5 Software Interface

The Software Interface was tested in three phases. First, the interface was

modified to not accept any serial input, and attempt to submit and retrieve

parameter values from Laerdal SimMan. Next, we tested if our parameter-

update detection events were being properly triggered by creating a window

with a text box that displayed a timestamp every time a parameter change

was detected. We fed manual parameter changes into the SimMan Virtual

Manikin, and confirmed that the Software Interface was properly reacting.

Finally, we re-enabled serial communication and used the on-screen textbox

to display all data received from the Arduino. We verified that all data was

being received as expected.

13

IV. COST

4.1 LABOR:

Member $/hour # of

weeks

Hours/week Total

hours

Subtotal (x2.5)

Jian 50 12 15 180 9000 22,500

Michal 50 12 15 180 9000 22,500

Total: $ 45,000

4.2 PARTS:

Name Cost
Each

Quantity
Needed

Total Cost

Arduino Due 48.45 2 96.90

Capacitive

Touch Kit For

Arduino

18.50 2 88.68 (incl ship)

small push

buttons

n/a 8 5.95

illuminated

latching

pushbutton
switch

3.95 1 3.95

Large button 3.95 7 27.65

3.3 V backlit lcd
(20x4)

21.95 4 87.80

Arduino Power

Supply

6.95 4 27.80

2m micro usb

cable

8.60 2 17.20

14

potentiometer

(for controlling

contrast on lcd)

1.25 4 5.00

Logic Level
Converter

1.95 2 3.90

Enclosure A 24 1 24

Enclosure B 16 1 16

■ GRAND TOTAL = LABOR + PARTS = $45353.15

15

V. Conclusion

5.1 Accomplishment

The project achieved all initial requirements proposed by Jump Trading. With

the push buttons and rotary encoders, users could easily adjust parameters

without looking at the controller. The LCD unit helps the user to have a

glimpse at the value and parameter they are changing.

5.2 Uncertainties

After constructing the device, we noticed that our LCD Unit would heat up

during operation. The enclosure for LCD Unit is housing 3 LCDs and the

microcontroller. All these components are generating considerable heat, and

the enclosure is sealed with only three holes for cable connections. We do

not know if this heating is dangerous to the microcontroller, but we have not

run into any issues so far.

5.3 Ethical Considerations

Our project was to create a user input device for the medical simulation

system used by Jump Trading to help the simulator smoothly transition

between the process of observing (when the simulator is looking out

horizontally) and parameters-adjusting (when the user is looking down to

the device holding in one’s hands). Several IEEE Code of Ethics were

addressed:

1 To accept responsibility in

making decisions consistent

with the safety, health, and

welfare of the public, and to
disclose promptly factors that

might endanger the public or

the environment;

The Jump Trading Simulation and

Education Center offers medical

training programs by simulating

real-time medical scenarios to
training medical students to better

prepare them for real-life practice in

their future. Our device makes it

easier for the simulator to change

parameters during the process of
simulation. The device allows

technicians to free their eyes from

looking at the monitor while

changing parameters. Thus they
could better focus on the on-going

16

simulation. Our project serves for

the safety, health, and public

welfare.

2. To avoid real or perceived

conflicts of interest whenever

possible, and to disclose them
to affected parties when they

do exist;

We kept a communication channel

with Jump Trading through emails,

and phone calls. Our project design
is built based on our natural

understanding. If a conflict did occur

we disclosed it as soon as possible.

We also worked on open source
components and software, trying to

avoid any potential patent

infringement by other third parties.

3. To be honest and realistic in
stating claims or estimates

based on available data;

We tried to make a detailed
verification plan. The real

verification process followed this

plan.

4. To reject bribery in all its
forms;

Bribery did not occur, but in the
case it happened, we would have

rejected any kind of bribery and

reported the incident.

5. To improve the

understanding of technology;

it’s appropriate application,

and potential consequences;

By preliminary research, we learned

to use different technologies to

approach the problem. By

comparing the cons and pros we
chose the best approach given the

circumstances.

6. To maintain and improve our

technical competence and to
undertake technological tasks

for others only if qualified by

training or experience, or after

full disclosure of pertinent
limitations;

We carefully evaluated all our initial

ideas. Because we needed to deliver
a functioning product, we often

made conservative choices in design

to maximize the chances having a

functioning device.

7. To seek, accept, and offer

honest criticism of technical

work, to acknowledge and
correct errors, and to credit

properly the contributions of

We were open to all critiques and

criticisms. We also acknowledged

and corrected errors.

17

others;

8. To treat fairly all persons
regardless of such factors as

race, religion, gender,

disability, age, or national

origin;

We made every effort to keep the
equality of our working

environment. No racial, religious,

gender or any kind of bias was

tolerated in the team.

9. To avoid injuring others, their

property, reputation, or

employment by false or

malicious action;

We strictly followed all the lab safety

codes and regulations. We also kept

a high self-discipline and respect for

each other, and conducted our
behavior lawfully.

10. To assist colleagues and co-

workers in their professional
development and to support

them in following this code of

ethics.

We were committed to every team

member in helping with each other’s
academic and professional

development.

5.4 Future Work

Future expansion might include:

1. Adding more functionality by adding more push buttons

2. Explore other input methods, including capacitive touch surface again

to improve ergonomics.

3. Consider using wireless communication between the LCD unit and

hand hold controller unit to increase the mobility and durability of the

communication.

18

VI. Device Use Guide

6.1 Connection

1. Connect the usb cable between the device and computer running

SimMan.

2. Connect the power supply to the device.

3. Launch Interface.exe

4. Select the Manikin being used and click “Connect”

5. The device is ready to use

6.2 Device Use

The LCD’s display the values of the parameters currently live in the manikin.

Changes can be made either through the device or through SimMan.

To pause the simulation, press the “pause” button. To unpause, press the

“pause” button again.

To load a new parameter:

1. Press the corresponding parameter button.

2. Use the knobs to adjust the value on the bottom screen to the desired

level. The right knob is used to increase the value, and the left to

decrease the value.

3. Press the submit button.

19

VII. References

1. "Arduino - Analog Input." Arduino - AnalogInput. N.p., n.d. Web. 30 Sept.

2012. <http://arduino.cc/en/Tutorial/AnalogInput>.

2. "Arduino - ArduinoBoardUno." Arduino - ArduinoBoardUno. N.p., n.d. Web.

30 Sept. 2012. <http://arduino.cc/en/Main/ArduinoBoardUno>.

3. "Arduino." Build Your Own. N.p., n.d. Web. 30 Sept. 2012.

<http://www.instructables.com/id/Build-Your-Own-Arduino/>.

4. "Arduino Character LCD Tutorial." Arduino Character LCD Tutorial. N.p.,

n.d. Web. 30 Sept. 2012. Sept. 2012.

<http://www.hacktronics.com/Tutorials/arduino-character-lcd-tutorial.html>.

5. “Setting up an Arduino on a Breadboard." Physical Computing at ITP. N.p.,

n.d. Web. 30 <http://itp.nyu.edu/physcomp/Tutorials/ArduinoBreadboard>.

Appendix

VERIFICATION PROCEDURE

Performance Requirements Testing/ Verification

User Interface

1. Each of the 7 buttons should

function properly as on/off

buttons. They are all edge-

triggered.

2. Capacitive Touch Surface for
Value should function properly.

3. Capacitive Touch Surface for Time

should function properly.

4. LED should be lighted when

1. Using a breadboard, feeding it

with 3V voltage, connecting a
button using a Multimeter to

measure the voltage across the

resister.

2. Connect Capacitive Touch

Surface for Value to a 12pin-to-
6pin converter, feed the VCC pin

with 5 V DC voltage, connect

GND pin to the Ground, use a

Multimeter to test the voltage of

20

PAUSE button is pressed, and

should be turned off when the

PAUSE button is un-pressed.
5. The output voltage of Capacitive

Touch Surface for Value’s digital

pins should be regulated to 3.3

volts. (The new Arduino digital
pins only take 3.3 Volts input)

6. The output voltage of Capacitive

Touch Surface for Time’s digital

pins should be regulated to 3.3
volts. (The new Arduino digital

pins only take 3.3 Volts input)

the rest 4 pins when touch

different grid on the Touch

sensing part of the device.
3. Connect Capacitive Touch

Surface for Time to a 12pin-to-

6pin converter, feed the VCC pin

with 5 V DC voltage, connect
GND pin to the Ground, use a

Multimeter to test the voltage of

the rest 4 pins when touch

different grid on the Touch
sensing part of the device.

4. Connect the LED button in series

with button on the breadboard,

connect the breadboard with
3.3V DC voltage and ground

accordingly. When button is

pressed, LED should light up,

when button is un-pressed, the

light should turn off.
5. Following the same procedures of

step2, but extend the output to

pass it through a voltage divider,

regulate output from 5V to
3.00V±.33V. When the

corresponding pin is high, the

voltage reading from the

Multimeter should be 3.00±.33
Volts.

6. Following the same procedures of

step3, but extend the output to

pass it through a voltage divider,

regulate output from 5V to
3.00±.33V. When the

corresponding pin is high, the

voltage reading from the

Multimeter should be 3 Volts.

LCD Unit

1. When turned on, LCD_names1

must stably runs on 3.3 ±

1. Power the LCD, use a
Multimeter to measure the

power pin of the LCD, the

reading should be 3.30 ± 0.33

21

10% volts.

2. When turned on, LCD_name2

must stably runs on 3.3 ±
10% volts.

3. When turned on, LCD_values

must stably runs on 3.3 ±

10% volts.
4. When turned on, LCD_time

must stably runs on 3.3 ±

10% volts.

5. LCD ‘s display delay from the
input submition must be less

than 0.3 second.

Volts.

2. Power the LCD, use a

Multimeter to measure the
power pin of the LCD, the

reading should be 3.30 ± 0.33

Volts.

3. Power the LCD, use a
Multimeter to measure the

power pin of the LCD, the

reading should be 3.30 ± 0.33

Volts.
4. Power the LCD, use a

Multimeter to measure the

power pin of the LCD, the

reading should be 3.3 ± 0.33
Volts.

5. Connect the LCD to Arduino,

connect Arduino to User

Interface, use a oscilloscope

to measure the voltages of
LCD input pin and User

Interface output pin, read the

time difference of two spikes,

this difference should be less
then 0.3 seconds.

Micro-controller

Inputs:

1. Each of the 7 buttons should
map to a specific parameter

we are going to change.

2. Capacitive Touch Surface for
Value should behave according

to the design, with moving up

mapping to 1 unit increase

value of the chosen

parameter; moving down
mapping to 1 unit decrease

value of the chosen

parameter; moving right

mapping to 0.1 unit increase

Inputs:

1. Connect the buttons through

wires to the pins on the Arduino

board. Using a Arduino test code
on the computer to read out the

value when different buttons

were pressed:

pin1 (Heart Rate): correspond

variable value is assigned to 1;
pin2 (Respiratory Rate/ awRR):

correspond variable value is

assigned to 1;

pin3 Oxygen Saturation:
correspond variable value is

assigned to 1;

pin4 Blood Pressure (Diastolic):

22

value of the chosen

parameter; moving left

mapping to 0.1 unit decrease
of the chosen parameter.

3. Capacitive Touch Surface for

Time should behave according

to the design, with moving up
mapping to 1 unit increase

time of the chosen parameter;

moving down mapping to 1

unit decrease time of the
chosen parameter; moving

right mapping to 0.1 unit

increase time of the chosen

parameter; moving left
mapping to 0.1 unit decrease

time of the chosen parameter.

4. Arduino should correctly

present the input value from

SimMan software through USB

cable connection.

Outputs:

1. Arduino should output a 6-pin
output to the LCD_names1 to

display the parameter names.

2. Arduino should output a 6-pin

output to the LCD_names2 to
display the parameter names.

3. Arduino should output a 6-pin

output to the LCD_values to

display the parameter values.
4. Arduino should output a 6-pin

output to the LCD_time to

display the parameter

evolution time.
5. 3V3 VCC pin outputs 3.00V ±

.33V

6. 5 VCC pin outputs

5.0V ± .5V

correspond variable value is

assigned to 1;

pin5 Blood Pressure (Systolic):
correspond variable value is

assigned to 1;

pin6 Pause: correspond variable

value is assigned to 1;
pin7 Submit/ Save: correspond

variable value is assigned to 1;

2. Connect the Capacitive Surface

for Value through wires to the
pins on the Arduino board. Using

a Arduino test code on the

computer to read out the value

when different gestures were
performed:

Sweeping up-to-down by one

sensing grid: value decrease by 1

unit.

Sweeping down-to-up by one
sensing grid: value increase by 1

unit.

Sweeping left-to-right by one

sensing grid: value increase by
0.1 units.

Sweeping right-to-left by one

sensing grid: value decrease by

0.1 units.
3. Connect the Capacitive Surface

for Time through wires to the

pins on the Arduino board. Using

a Arduino test code on the

computer to read out the value
when different gestures were

performed:

Sweeping up-to-down by one

sensing grid: value decrease by 1
unit.

Sweeping down-to-up by one

sensing grid: value increase by 1

unit.
Sweeping left-to-right by one

sensing grid: value increase by

23

0.1 units.

Sweeping right-to-left by one

sensing grid: value decrease by
0.1 units.

4. Arduino is connected to the

computer (running SimMan)

through USB cable, a Arduino
test code is going to test and

display the value received from

the SimMan software on the test

computer. When change heart
rate from 80 to 90, the reading

pulling out from the SimMan is

also going to update from 80 to

90.

Outputs: The five pins for the data
line of the 6-pin digital lines are

shared by the 4 LCDs, while the 6th

control line would be used to select

between different LCDs to change

display.

1. When one of the ‘Heart Rate’
‘Respiratory Rate/ awRR’ ‘Blood

Pressure (Diastolic)’ ‘Blood

Pressure (Systolic)’ is being

selected, the LCD_names1 is
going to be selected, and the

corresponding parameter is going

to be marked with a little ‘*’

beside it.
2. When ‘Oxygen Saturation’ is

being selected, the LCD_names2

is going to be selected, and the

corresponding parameter is going
to be marked with a ‘*’ beside it.

(Three more parameters could be

implemented for future

expansion).

3. When one of the parameters was
chosen, the LCD_values should

24

be selected, and start to display

the selected value.

4. When one of the parameters was
chosen, the LCD_time should be

selected, and start to display the

selected value’s evolution time.

5. When measured with a
multimeter, the voltage drop

between VCC 3V3 and ground is

within the voltage tolerance. The

voltage should remain within the
tolerance both with no external

devices hooked up to the

microcontroller, and under full

load.
6. When measured with a

multimeter, the voltage drop

between VCC 5V and ground is

within the voltage tolerance. The

voltage should remain within the
tolerance both with no external

devices hooked up to the

microcontroller, and under full

load.

Power Supply

1. Power supply should be
regulated between 7-12 Volts,

1000±100 mA.

2. Power from wall should be 120

± 12V AC

1. Plug the power cord into the

wall, measure the output

voltage use a Multimeter. It
should read 9.0±0.9 Volts;

measure the current using a

Multimeter. It should read

1000±100mA.
2. Measure the voltage with a

multimeter and check if it is

within the acceptable bounds.

Software Interface

1. Parameter updates from the

microcontroller should be

received through the usb

connection.

1. Test code will be used to

display the values received
from the microcontroller,

without sending them to the

Laerdal SimMan software.

These values will be checked

25

2. Parameter updates from the

microntroller should be

properly parsed and
communicated to the Laerdal

SimMan software.

3. Pause signals from the

microcontroller should be
received through the usb

connection.

4. Pause signals from the

microntroller should be
properly parsed and

communicated to the Laerdal

SimMan software.

against the input into the

microcontroller to confirm that

they are the same.
2. Test code will be used to pass

parameters to the Laerdal

SimMan software without

input from the Microcontroller.
These values will be checked

both ends to verify that they

are the same after the code

executes.
3. Test code will be used to

display when a pause signal is

received from the

microcontroller, without
sending it to the Laerdal

SimMan software. One pause

signal sent by the

microcontroller should

correspond to one pause
signal received by the

software interface.

4. Test code will be used to send

pause signals to the Laerdal
SimMan software without

input from the Microcontroller.

